slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
PEMODELAN MIXED GEOGRAPHICALLY WEIGHTED REGRESSION (MGWR) DENGAN JARAK EUCLIDEAN DAN JARAK MANHATTAN (STUDI KASUS : KEMATIAN BAYI NEONATAL DI JAWA TENGAH TAHUN 2018-2020) | Primasari | Jurnal Gaussian skip to main content

PEMODELAN MIXED GEOGRAPHICALLY WEIGHTED REGRESSION (MGWR) DENGAN JARAK EUCLIDEAN DAN JARAK MANHATTAN (STUDI KASUS : KEMATIAN BAYI NEONATAL DI JAWA TENGAH TAHUN 2018-2020)

Riszki Bella Primasari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Agus Rusgiyono  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
*Dwi Ispriyanti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Neonatal is a condition of babies from birth to 28 days. Data on Indonesia's health profile in 2020 showed that 72% of the number of deaths of toddlers occurred during the neonatal period and Central Java became the highest province of cases. Factors that are suspected to influence are the number of low birth weight babies (X1), the number of obstetric complications (X2), the number of Puskesmas (X3), the number of Posyandu (X4), the number of exclusive breastfeeding babies 0-6 months (X5), the number of pediatricians (X6), the number of ambulance cars (X7). Linear regression modeling on the number of neonatal infant deaths in Central Java has a heteroskedasticity problem so that Geographically Weighted Regression (GWR) is used. The distances used are Euclidean and Manhattan as well as the weighting function using Exponential and Tricube Kernel with Fixed Bandwidth. GWR modeling shows that not all independent variables are local, so Mixed Geographically Weighted Regression (MGWR) is used. The results of the GWR analysis with both distances and the two variable weighting functions are not local, including X2, X5, and X7. MGWR distance Manhattan Fixed Tricube Kernel became the better model, as the AICC value was smaller.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Pemodelan Mixed Geographically Weighted Regression (MGWR) Dengan Jarak Euclidean Dan Jarak Manhattan (Studi Kasus : Kematian Bayi Neonatal di Jawa Tengah Tahun 2018-2020)
Subject Neonatal; MGWR; Distance; Weighting Function
Type Research Instrument
  Download (25KB)    Indexing metadata
Keywords: Neonatal; MGWR; Distance; Weighting Function

Article Metrics:

  1. Azizah, I. dan Oktiaworo, K.H.2017.Kematian Neonatal Di Kabupaten Grobogan.Higeia Journal of Public Health Research And Developmen. Vol.1, No.4 : Hal. 72-85
  2. Dinas Kesehatan Jawa Tengah [Dinkes Jateng].2021.Data Dasar Puskesmas dan Rumah Sakit Tahun 2020.Semarang:Dinas Kesehatan Provinsi Jawa Tengah
  3. Dinas Kesehatan Jawa Tengah [Dinkes Jateng].2021.Profil Kesehatan Provinsi Jawa Tengah Tahun 2020.Semarang:Dinas Kesehatan Provinsi Jawa Tengah
  4. Fotheringham, A.S., Brundson, C. dan Charlton, M. 2002. Geographically Weighted Regression.Chichester, UK: John Wiley and Sons
  5. Gollini, I., Lu, B., Charlton, M., Brunsdon, C., dan Harris, P. 2015. GWmodel: an R package for exploring spatial heterogeneity using geographically weighted models. Journal of Statistics Software. Vol.63, No. 17: Hal. 1-50
  6. Ispriyanti, D., Yasin, H, Warsito, B., Hoyyi, A., dan Winarso, K. 2017.Mixed Geographically Weighted Regression Using Adaptive Bandwidth to Modeling of Air Polluter Standard Index.ARPN Journal of Engineering and Applied Sciences. Vol.12, No.15 : Hal. 4477-4482
  7. Kementerian Kesehatan Republik Indonesia [Kemenkes RI].2021.Profil Kesehatan Indonesia Tahun 2020.Jakarta:Kementerian Kesehatan RI
  8. Leung, Y., Mei, C.L, dan Zhang, W.X. 2000. Statistical Test for Spatial Non-Stationarity Base on the Geographically Weighted Regression Model. Department of Geography and The Centre for Environmental Studies The Chinese University of Hongkong, Shatin, Hongkong
  9. Pamungkas, R. A., Yasin, H., dan Rahmawati, R. 2016. Perbandingan Model GWR dengan Fixed dan Adaptive Bandwidth untuk Persentase Penduduk Miskin di Jawa Tengah. Jurnal Gaussian, Vol. 5, No. 3: Hal.535-544
  10. Purhadi dan Yasin, H.2012.Mixed Geographically Weighted Regression Model Case Study : The Percentage of Poor Households in Mojokerto 2008.European Journal of Scientific Research, Vol.69, Issue.2: Hal.188-196
  11. Wuryanti, I. W. F., Purnami, S. W., dan Purhadi, P. 2013. Pemodelan Mixed Geographically Weighted Regression (MGWR) pada Angka Kematian Balita di Kabupaten Bojonegoro Tahun 2011. Jurnal Sains dan Seni ITS, Vol. 2, No. 1: Hal. D66-71

Last update:

No citation recorded.

Last update:

No citation recorded.