skip to main content

ANALISIS SUPPORT VECTOR REGRESSION (SVR) DENGAN ALGORITMA GRID SEARCH TIME SERIES CROSS VALIDATION UNTUK PREDIKSI JUMLAH KASUS TERKONFIRMASI COVID-19 DI INDONESIA

*Anindita Nur Safira  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Budi Warsito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Agus Rusgiyono  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Coronavirus Disease 2019 or Covid-19 is a group of types of viruses that interfere with the respiratory tract associated with the seafood market that emerged in Wuhan City, Hubei Province, China at the end of 2019. The first confirmed cases of Covid-19 in Indonesia on March 2, 2020, were 2 cases and until the end of 2021, it continues to grow every day. The purpose of this study was to predict the number of confirmed cases of Covid-19 in Indonesia using the Support Vector Regression (SVR) method with linear kernel functions, radial basis functions (RBF), and polynomials. Support Vector Regression (SVR) is the application of a support vector machine (SVM) in regression cases that aims to find the dividing line in the form of the best regression function. The advantage of the SVR model is can be used on time series data, data that are not normally distributed and data that is not linear. Parameter selection for each kernel used a grid search algorithm combined with time series cross validation. The criteria used to measure the goodness of the model are MSE (Mean Square Error), MAPE (Mean Absolute Percentage Error) and R2 (Coefficient of Determination). The results of this study indicate that the best model is Support Vector Regression (SVR) with a polynomial kernel and the parameters used include Cost = 1, degree = 1, and coefficient = 0.1. The polynomial kernel SVR model produces a MAPE value of 0.4946215%, which means the model has very good predictive ability. The prediction accuracy obtained with an R2 value of 85.65011% and an MSE value of 161606.1.
Fulltext View|Download
Keywords: Support Vector Regression (SVR); Grid Search Algorithm; Time Series Cross Validation; Kernel; MAPE (Mean Absolute Percentage Error)

Article Metrics:

  1. Abdillah, L. A., Faried, A. I., Febrianty, Iqbal, M., Masrul, Mastuti, R., Napitupulu, D., Prianto, C., Puji Hastuti, J., Purba, D. W., Purnomo, A., Rahmadana, M. F., Ramadhani, Y. R., Saputra, D. H., Sari, J. D. C., Simarmata, J., Sulaiman, D. O. K., Soetijono, I. K., Tasnim, & Vinolina, N. S. (2020). Pandemik COVID-19: Persoalan dan Refleksi di Indonesia (T. Limbong (ed.)). Yayasan Kita Menulis
  2. Adiningtyas, D. T., Mukid, M. A., & Safitri, D. (2015). Peramalan Jumlah Tamu Hotel Di Kabupaten Demak Menggunakan Metode Support Vector Regression. None, 4(4), 785–794
  3. Athanasopoulos, R. J. H. and G. (2021). Forecasting: Principles and Practice (3rd ed). Monash University, Australia. https://otexts.com/fpp3
  4. Firmansyah, N. Y., Nawangsari, E. R., Rahmadani, A. W., & Zachary, Y. A. (2021). Partisipasi Masyarakat Kelurahan Jelakombo Terhadap Pemberlakuan Pembatasan Kegiatan Masyarakat (PPKM) Skala Mikro Di Kabupaten Jombang. Jurnal Syntax Transformation, 2(5), 593–605
  5. Gunn, S. R. (1998). Support Vector Machines for classification and regression. In Analyst
  6. Prahutama, A., Utami, T. W., & Yasin, H. (2014). Prediksi Harga Saham Menggunakan Support Vector Regression Dengan Algoritma Grid Search. Media Statistika, 7(1), 29–35
  7. Rianto, M., & Yunis, R. (2021). Analisis Runtun Waktu Untuk Memprediksi Jumlah Mahasiswa Baru Dengan Model Random Forest. Paradigma - Jurnal Komputer Dan Informatika, 23(1)
  8. Santosa, B. (2007). Data Mining Terapan dengan MATLAB (1st ed.). Graha Ilmu
  9. Saputra, G. H., Sartono, B., & Wigena, A. H. (2019). Penggunaan Support Vector Regession dalam Pemodelan Indeks Saham Syariah Indonesia dengan Algoritma Grid Search. 148–160
  10. Scholkopf, B., & Smola, A. J. (2004). A tutorial on support vector regression. Statistics and Computing, 14, 199–222
  11. WHO. (2020a). 15-Novel Coronavirus (2019-nCoV). World Health Organization, February, 1–7
  12. WHO. (2020b). Coronavirus disease 2019 (COVID-19) Situation Report – 42 Data as reported by 10 AM CET 02 March 2020 H. World Health Organization, 14(6), e01218
  13. worldometers. (2021). Reported Cases and Deaths by Country or Territory. Www.Worldometers.Info. https://www.worldometers.info/coronavirus/?zarsrc=130#main_table

Last update:

No citation recorded.

Last update:

No citation recorded.