### ANALISIS SENTIMEN PADA ULASAN APLIKASI INVESTASI ONLINE AJAIB PADA GOOGLE PLAY MENGGUNAKAN METODE SUPPORT VECTOR MACHINE DAN MAXIMUM ENTROPY

*Fath Ezzati Kavabilla  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tatik Widiharih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Budi Warsito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia

Citation Format:
Abstract
Investment is money or asset to earn profits in the future. Online investment applications are already available, one of which is Ajaib. A review of Ajaib’s application is needed to find out reviews given are positive or negative. Sentiment analysis in Ajaib is used to see the user's response to Ajaib’s performance which is divided into positive and negative classes. Sentiment analysis of the Ajaib’s reviews classification can be used with the Support Vector Machine and Maximum Entropy methods. Support Vector Machine on non-linear problems inserts the kernel into a high-dimensional space, to find a hyperplane that can maximize the distance between classes. The kernel used in SVM is the Radial Basis Function (RBF) kernel with gamma parameters of 0.002 and Cost (C) of 0.1; 1; 10. Maximum Entropy is a classification technique that uses the entropy value to classify data with the evaluation model used, namely 5-fold cross-validation. The algorithm which has the highest accuracy and kappa statistics is the best algorithm for classifying the sentiments of Ajaib users. The results using the Support Vector Machine algorithm show the overall accuracy is 85.75% and the kappa accuracy is 58.07%. The results using the Maximum Entropy algorithm show an overall accuracy of 83% and kappa accuracy of 50.5%. This shows that sentiment using the Support Vector Machine has a better performance than Maximum Entropy.
Keywords: Investment; Ajaib; Sentiment Analysis; Support Vector Machine (SVM); Maximum Entropy.

Article Metrics:

Article Info
Section: Articles
Language : ID
Recent articles
1. Alroy, A. B. (2019). Klasifikasi Hoaks Menggunakan Metode Maximum Entropy Dengan Seleksi Fitur Information Gain (Doctoral dissertation, Universitas Brawijaya)
2. Cortes, C., & Vapnik, V. 1995. Support-vector networks. Machine learning, 20(3), 273-297
3. Gunn, S. R. 1998. Support Vector Machines for Classification and Regression. Southampton: University of Southampton
4. Liu, B. 2010. Sentiment analysis and subjectivity. Handbook of natural language processing, 2(2010), 627-666
5. Nugroho, A. S., Witarto, A. B., & Handoko, D. (2003). Support vector machine. Proceeding Indones. Sci. Meeiting Cent. Japan
6. Prasetyo, E., 2012. Data Mining Konsep dan Aplikasi menggunakan Matlab. Yogyakakara: Andi
7. Putra, M. F., Herdiani, A., & Puspandari, D. (2019). Analisis Pengaruh Normalisasi, Tf-idf, Pemilihan Feature-set Terhadap Klasifikasi Sentimen Menggunakan Maximum Entropy (studi Kasus: Grab Dan Gojek). eProceedings of Engineering, 6(2)
8. Sabily, A. F., Adikara, P. P., & Fauzi, M. A. (2019). Analisis Sentimen Pemilihan Presiden 2019 pada Twitter menggunakan Metode Maximum Entropy. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X
9. Salim, S. S., & Mayary, J. (2020). Analisis Sentimen pengguna Twitter terhadap dompet elektronik dengan metode lexicon based dan k–nearest neighbor. Jurnal Ilmiah Informatika Komputer, 25(1), 1-17
10. Tandelilin, E. 2010. Portofolio dan Investasi: Teori dan aplikasi. Kanisius
11. Berita Satu. 2021. Jumlah Investor Pasar Modal Tembus 6,59 Juta. https://www.beritasatu.com/ekonomi/845369/jumlah-investor-pasar-modal-tembus-659-juta

Last update:

No citation recorded.

Last update:

No citation recorded.