BibTex Citation Data :
@article{J.Gauss34001, author = {Syazwina Aufa and Rukun Santoso and Suparti Suparti}, title = {PEMODELAN INDEKS HARGA PROPERTI RESIDENSIAL DI INDONESIA MENGGUNAKAN METODE GENERALIZED SPACE TIME AUTOREGRESSIVE}, journal = {Jurnal Gaussian}, volume = {11}, number = {1}, year = {2022}, keywords = {GSTAR, OLS, IHPR}, abstract = { Generalized Space Time Autoregressive (GSTAR) is a model used for space time data analysis. Space time data is data related to events at previous times and different locations. GSTAR is an expansion of the Space Time Autoregressive (STAR) method. The STAR method is only suitable for homogeneous locations while GSTAR can be used for heterogeneous locations. This research uses Residensial Property Price Index (IHPR) data. IHPR data is in the form of a multivariate time series consisting of 18 cities/regions with a certain time span. In this study, the analysis of IHPR data is carried out by looking at the relationship between the previous time and other cities/regions. Therefore, the method that can be used is GSTAR method. Analysis of IHPR data in each city/region can help increase the supply of housing, thereby reducing the number of backlogs. The backlog of houses in Indonesia is still relatively high. Backlog is an indicator that is often used by the government to measure the number of housing needs in Indonesia. Based on the fulfillment of the assumptions and the smallest MSE value, the best model obtained is GSTAR(4;1,1,1,1) using cross-correlation normalized weight. The largest IHPR data on forcasting results is in the cities of Makassar, Manado, and Surabaya while the smallest IHPR data is in the city of Balikpapan. The GSTAR method produces forcasted data that is close to the actual data so it is good to use. Keywords : GSTAR, OLS, IHPR }, issn = {2339-2541}, pages = {31--44} doi = {10.14710/j.gauss.v11i1.34001}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/34001} }
Refworks Citation Data :
Generalized Space Time Autoregressive (GSTAR) is a model used for space time data analysis. Space time data is data related to events at previous times and different locations. GSTAR is an expansion of the Space Time Autoregressive (STAR) method. The STAR method is only suitable for homogeneous locations while GSTAR can be used for heterogeneous locations. This research uses Residensial Property Price Index (IHPR) data. IHPR data is in the form of a multivariate time series consisting of 18 cities/regions with a certain time span. In this study, the analysis of IHPR data is carried out by looking at the relationship between the previous time and other cities/regions. Therefore, the method that can be used is GSTAR method. Analysis of IHPR data in each city/region can help increase the supply of housing, thereby reducing the number of backlogs. The backlog of houses in Indonesia is still relatively high. Backlog is an indicator that is often used by the government to measure the number of housing needs in Indonesia. Based on the fulfillment of the assumptions and the smallest MSE value, the best model obtained is GSTAR(4;1,1,1,1) using cross-correlation normalized weight. The largest IHPR data on forcasting results is in the cities of Makassar, Manado, and Surabaya while the smallest IHPR data is in the city of Balikpapan. The GSTAR method produces forcasted data that is close to the actual data so it is good to use.
Keywords : GSTAR, OLS, IHPR
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics