slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
PENGELOMPOKAN TWEETS PADA AKUN TWITTER TOKOPEDIA MENGGUNAKAN ALGORITMA DENSITY BASED SPATIAL CLUSTERING OF APPLICATIONS WITH NOISE | Alamsyah | Jurnal Gaussian skip to main content

PENGELOMPOKAN TWEETS PADA AKUN TWITTER TOKOPEDIA MENGGUNAKAN ALGORITMA DENSITY BASED SPATIAL CLUSTERING OF APPLICATIONS WITH NOISE

Deanira Qinanty Alamsyah  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
*Sudarno Sudarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Puspita Kartikasari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Social media has become a trend for Indonesian people to express opinions, socialize, and exchange ideas. Internet users in Indonesia in 2021 will reach 202.6 million, 84% of whom use the internet to access social media. Twitter is one of the popular social media in Indonesia. This phenomenon is an opportunity for companies to use Twitter as a marketing tool, one of which is a marketplace company in Indonesia, Tokopedia. This research is intended to cluster tweets uploaded by the @tokopedia Twitter account to find out the type of content that gets a lot of likes and retweets by followers of the @tokopedia Twitter account. Cluster formation is done by applying the Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN). DBSCAN is a clustering algorithm based on density. The DBSCAN algorithm requires two parameters, namely the radius (Eps) and the minimum number of objects to form a cluster (MinObj). This research conducted several experiments with different Eps and MinObj parameters on 1.344 tweets that had gone through the stages of removing duplication, text preprocessing, and feature selection. The quality of the cluster formed is measured using the Silhouette Coefficient. Based on the highest average Silhouette Coefficient, the parameter values of Eps=5 and MinObj=3 with Silhouette Coefficient = 0.575 are determined as the best parameters that produce 2 clusters and 7 noise. The type of content that has the highest average number of likes and retweets is the WIB (Indonesian Shopping Time) campaign, so Tokopedia can use this type of content as a marketing tool on Twitter social media because this type of content is preferred by followers of the @tokopedia Twitter account.

 

Keywords: Twitter, Tokopedia, Clustering, DBSCAN, Silhouette Coefficient

Fulltext View|Download
Keywords: Twitter; Tokopedia; Clustering; DBSCAN; Silhouette Coefficient

Article Metrics:

  1. Aseanup, 2019. Top 10 E-commerce Sites in Indonesia 2019. https://aseanup.com/top-e- commerce-sites-indonesia/. Diakses 28 Februari 2021
  2. Datareportal, 2021. Digital 2021: Indonesia. https://datareportal.com/reports/digital-2021-indonesia. Diakses 2 Maret 2021
  3. Feldman, R. & Sanger, J., 2007. The Text Mining Handbook. New York: Cambridge University Press
  4. Gunelius, S. 2011. 30 Minute Social Media Marketing. United States: McGraw Hill
  5. Han, J., Kamber, M., & Pei, J. 2012. Data Mining Concept & Techniques. Waltham: Elsevier Inc
  6. Ian H. Witten & Eibe Frank. 2005. Data Mining Practical Machine Learning Tools and Techniques. Morgan Kaufmann Publishers, San Francisco
  7. L. Kaufman and P. J. Rousseuw. 1990. Finding Groups in Data. New York: John Wiley & Sons
  8. Nagpal, P. B., & Mann, P. A. 2011. Comparative study of density based clustering algorithms. International Journal of Computer Applications, 27(11), 421-435
  9. Prasetyo, E. (2014). Data Mining: Mengolah Data Menjadi Informasi Menggunakan Matlab. Yogyakarta: Penerbit ANDI
  10. Purwanto, Barus, U. Y., Adrianto, B., & Agung, H. 2012. Spatial Hotspots Clustering of Forest and Land Fires using DBSCAN and ST-DBSCAN. Bogor
  11. Robertson, S. 2005. Understanding inverse document frequency: On theoretical arguments for IDF. Journal of Documentation, Hal. 502-520
  12. Suyanto, D. 2019. Data Mining Untuk Klasifikasi dan Klasterisasi Data. Bandung: Penerbit Informatika
  13. Weinberg, T., 2009. The New Community Rules : Marketing on the Social Web. California: O'Reilly

Last update:

No citation recorded.

Last update:

No citation recorded.