skip to main content

PREDIKSI HARGA JUAL KAKAO DENGAN METODE LONG SHORT-TERM MEMORY MENGGUNAKAN METODE OPTIMASI ROOT MEAN SQUARE PROPAGATION DAN ADAPTIVE MOMENT ESTIMATION DILENGKAPI GUI RSHINY

Yayan Setiawan  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
*Tarno Tarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Puspita Kartikasari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Cocoa is a leading commodity from Indonesia. Cocoa prices from time to time fluctuate. Accurate Cocoa price predictions are very important to ensure future prices and help decision making. Cocoa price data is non-stationary and nonlinear, so to make accurate predictions, an Artificial Neural Network (ANN) model is applied. One type of ANN is Long Short-Term Memory (LSTM). LSTM has superior performance for time series based prediction. Optimization methods used are Root Mean Square Propagation, and Adaptive Moment Estimation. The best model was selected based on the Means Square Error (MSE) and Mean Absolute Percentage Error (MAPE) values. This study uses the R-Shiny GUI to facilitate the use of LSTM for users who are less proficient in programming languages. Based on the results, the Long Short-Term Memory model with the Adaptive Moment Estimation optimization method is more optimal than the Long Short-Term Memory with Root Mean Square Propagation seen from the smaller MSE and MAPE values. This study used 27 combinations of hyperparameters. Prediction results with LSTM using the R-Shiny GUI have different levels of accuracy in each experiment. The best accuracy value is experiment with MSE value of 491505.1 and MAPE value of 1.739155% . Cocoa Price Forecasting for the period November to December 2021 tends to decline.

Keywords : Cocoa Prices, Forecasting, Long Short-Term Memory, Root Mean Square Propagation, Adaptive Moment Estimation, GUI R-Shiny

Fulltext View|Download
Keywords: Cocoa Prices; Forecasting; Long Short-Term Memory; Root Mean Square Propagation; Adaptive Moment Estimation; GUI R-Shiny

Article Metrics:

  1. Aindhae. (2019). CARA MENGHITUNG MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) DENGAN EXCEL. https://www.aindhae.com/2019/12/cara-menghitung-mean-absolute.html
  2. Amal, I. (2021). PREDIKSI HARGA MINYAK SAWIT MENTAH MENGGUNAKAN MULTILAYER PERCEPTRON DAN LONG SHORT-TERM MEMORY
  3. Bappebti. (2021). Harga Bursa ( Foward - Future - Spot ). https://www.bappebti.go.id/harga_komoditi_bursa
  4. BPS. (2020). [Seri 2010] PDB Seri 2010 (Milyar Rupiah) 2019. https://www.bps.go.id/indicator/11/65/2/-seri-2010-pdb-seri-2010.html
  5. Brownlee, J. (2017). Long short-term memory networks with python: develop sequence prediction models with deep learning. Machine Learning Mastery
  6. Ciaburro, G., & Venkateswaran, B. (2017). Neural network with R: Smart models using CNN, RNN, deep learning, and artificial intelligence principles. In Packt (Vol. 91). Packt Publishing
  7. De Marchi, L., & Mitchell, L. (2019). Hands-On Neural Networks: Learn how to build and train your first neural network model using Python. Packt Publishing Ltd
  8. Demuth, H. B., Beale, M. H., De Jess, O., & Hagan, M. T. (2014). Neural network design. Martin Hagan
  9. Fabien, M. (2019). Activation Functions. https://maelfabien.github.io/deeplearning/act/
  10. Frost, J. (n.d.). Mean Squared Error (MSE). https://statisticsbyjim.com/regression/mean-squared-error-mse/
  11. Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media
  12. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  13. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. ArXiv Preprint ArXiv:1412.6980
  14. Mallya, A. (2017). Lstm forward and backward pass. http://arunmallya.github.io/writeups/nn/lstm/index.html#/
  15. Nur, H. A. (2021). ANALISIS DAMPAK PENETAPAN HARGA KAKAO OLEH TENGKULAK TERHADAP KESEJAHTERAAN PETANI DITINJAU DALAM PERSPEKTIF EKONOMI ISLAM (Studi Pada Desa Padang Cermin, Kecamatan Padang Cermin, Kabupaten Pesawaran). UNIVERSITAS ISLAM NEGERI RADEN INTAN LAMPUNG
  16. Puntambekar, A. (2020). Strengths and Weaknesses of Optimization Algorithms Used for Machine Learning. https://medium.com/swlh/strengths-and-weaknesses-of-optimization-algorithms-used-for-machine-learning-58926b1d69dd
  17. Qiu, J., Wang, B., & Zhou, C. (2020). Forecasting stock prices with long-short term memory neural network based on attention mechanism. PloS One, 15(1), e0227222
  18. Ruder, S. (2016). An overview of gradient descent optimization algorithms. ArXiv Preprint ArXiv:1609.04747
  19. Stewart, M. (2019). Introduction to Neural Networks. Toward Data Science. https://towardsdatascience.com/simple-introduction-to-neural-networks-ac1d7c3d7a2c
  20. Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4(2), 26–31
  21. Tirta, I. M. (2014). Pengembangan E-Modul Statistika Terintegrasi dan Dinamik dengan R-shiny dan mathJax. Prosiding Seminar Nasional Matematika, Universitas Jember, 2000(November), 223–232
  22. Zahara, S., Sugianto, & Ilmiddafiq, M. B. (2017). Prediksi Indeks Harga Konsumen Menggunakan Metode Long Short Term Memory (LSTM) Berbasis Cloud Computing. Resti, 1(1), 19–25

Last update:

No citation recorded.

Last update:

No citation recorded.