BibTex Citation Data :
@article{J.Gauss33994, author = {Yayan Setiawan and Tarno Tarno and Puspita Kartikasari}, title = {PREDIKSI HARGA JUAL KAKAO DENGAN METODE LONG SHORT-TERM MEMORY MENGGUNAKAN METODE OPTIMASI ROOT MEAN SQUARE PROPAGATION DAN ADAPTIVE MOMENT ESTIMATION DILENGKAPI GUI RSHINY}, journal = {Jurnal Gaussian}, volume = {11}, number = {1}, year = {2022}, keywords = {Cocoa Prices; Forecasting; Long Short-Term Memory; Root Mean Square Propagation; Adaptive Moment Estimation; GUI R-Shiny}, abstract = { Cocoa is a leading commodity from Indonesia. Cocoa prices from time to time fluctuate. Accurate Cocoa price predictions are very important to ensure future prices and help decision making. Cocoa price data is non-stationary and nonlinear, so to make accurate predictions, an Artificial Neural Network (ANN) model is applied. One type of ANN is Long Short-Term Memory (LSTM). LSTM has superior performance for time series based prediction. Optimization methods used are Root Mean Square Propagation, and Adaptive Moment Estimation. The best model was selected based on the Means Square Error (MSE) and Mean Absolute Percentage Error (MAPE) values. This study uses the R-Shiny GUI to facilitate the use of LSTM for users who are less proficient in programming languages. Based on the results, the Long Short-Term Memory model with the Adaptive Moment Estimation optimization method is more optimal than the Long Short-Term Memory with Root Mean Square Propagation seen from the smaller MSE and MAPE values. This study used 27 combinations of hyperparameters. Prediction results with LSTM using the R-Shiny GUI have different levels of accuracy in each experiment. The best accuracy value is experiment with MSE value of 491505.1 and MAPE value of 1.739155% . Cocoa Price Forecasting for the period November to December 2021 tends to decline. Keywords : Cocoa Prices, Forecasting, Long Short-Term Memory, Root Mean Square Propagation, Adaptive Moment Estimation, GUI R-Shiny }, issn = {2339-2541}, pages = {99--107} doi = {10.14710/j.gauss.v11i1.33994}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/33994} }
Refworks Citation Data :
Cocoa is a leading commodity from Indonesia. Cocoa prices from time to time fluctuate. Accurate Cocoa price predictions are very important to ensure future prices and help decision making. Cocoa price data is non-stationary and nonlinear, so to make accurate predictions, an Artificial Neural Network (ANN) model is applied. One type of ANN is Long Short-Term Memory (LSTM). LSTM has superior performance for time series based prediction. Optimization methods used are Root Mean Square Propagation, and Adaptive Moment Estimation. The best model was selected based on the Means Square Error (MSE) and Mean Absolute Percentage Error (MAPE) values. This study uses the R-Shiny GUI to facilitate the use of LSTM for users who are less proficient in programming languages. Based on the results, the Long Short-Term Memory model with the Adaptive Moment Estimation optimization method is more optimal than the Long Short-Term Memory with Root Mean Square Propagation seen from the smaller MSE and MAPE values. This study used 27 combinations of hyperparameters. Prediction results with LSTM using the R-Shiny GUI have different levels of accuracy in each experiment. The best accuracy value is experiment with MSE value of 491505.1 and MAPE value of 1.739155% . Cocoa Price Forecasting for the period November to December 2021 tends to decline.
Keywords : Cocoa Prices, Forecasting, Long Short-Term Memory, Root Mean Square Propagation, Adaptive Moment Estimation, GUI R-Shiny
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics