skip to main content

PEMODELAN MIXED GEOGRAPHICALLY WEIGHTED REGRESSION DENGAN ADAPTIVE BANDWIDTH UNTUK ANGKA HARAPAN HIDUP (Studi Kasus : Angka Harapan Hidup di Jawa Tengah)

Rizki Faizatun Nisa  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
*Sugito Sugito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Arief Rachman Hakim  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Life expectancy at birth (AHH) is an estimate of the years a person will take from birth. AHH is used as an indicator of public health and welfare. These two indicators are of concern to the government in relation to human development. It is hoped that the AHH value will continue to increase so that the quality of human development will also increase. Modeling of the factors that influence AHH needs to be done so that efforts to increase AHH become more effective.The AHH value for Central Java (Central Java) in 2020 is 74.37. Factors thought to influence AHH in Central Java are the percentage of poor people (X1), the percentage of households with proper sanitation (X2), the percentage of children under five who are fully immunized (X3) and the open unemployment rate (X4). The assumption of homoscedasticity in AHH modeling in Central Java using linear regression was not fulfilled, meaning that there was spatial heterogeneity between districts/cities, so the Geographically Weighted Regression (GWR) method was used. The weighting function used is the Bisquare and Tricube kernels with adaptive bandwidth. The GWR method will encounter problems if not all independent variables are local, so the Mixed Geographically Weighted Regression (MGWR) method is used. The results of the GWR analysis for the two weighting functions are that the X1 variable is not local, so the MGWR method is used. The results of MGWR modeling for the two weighting functions are that local variables and global variables have a significant effect. The best model is the MGWR model with Kernel Tricube weighting because it has the smallest AICc value.

 

Keyword : AHH, GWR, MGWR, Adaptive Kernel Bisquare, Adaptive Kernel Tricube, AICc

Fulltext View|Download
Keywords: AHH, GWR, MGWR, Adaptive Kernel Bisquare, Adaptive Kernel Tricube, AICc

Article Metrics:

  1. BPS. (2011). ANGKA KEMATIAN BAYI DAN ANGKA HARAPAN HIDUP PENDUDUK
  2. INDONESIA Hasil Sensus Penduduk 2010. Jakarta: Badan Pusat Statistik
  3. BPS. (2021). Angka Harapan Hidup. Retrieved Oktober 14, 2021, from Badan Pusat Statistik Sirusa: https://sirusa.bps.go.id/sirusa/index.php/indikator/48
  4. BPS. (2021). Angka Harapan Hidup Saat Lahir. Retrieved September 29, 2021, from SIRUSA Badan Pusat Statistik: https://sirusa.bps.go.id/sirusa/index.php/indikator/1060
  5. BPS. (2021). Kemiskinan dan Ketimpangan. Retrieved Juli 2021, 6, from BADAN PUSAT STATISTIK: https://www.bps.go.id/subject/23/kemiskinan-dan-ketimpangan.html
  6. BPS. (2021). PROFIL KESEHATAN PROVINSI JAWA TENGAH 2020. Badan Pusat
  7. Statistik Provinsi Jawa Tengah
  8. BPS. (2021). PROVINSI JAWA TENGAH DALAM ANGKA Jawa Tengah Province in
  9. Figures 2021. Badan Pusat Statistik Provinsi Jawa Tengah
  10. BPS. (2021). SIRUSA. Retrieved Desember 23, 2021, from Garis Kemiskinan: https://sirusa.bps.go.id/sirusa/index.php/indikator/50
  11. BPS. (2021). SIRUSA. Retrieved Desember 23, 2021, from Pengeluaran Per Kapita: https://sirusa.bps.go.id/sirusa/index.php/indikator/197
  12. BPS. (2021). SIRUSA. Retrieved Desember 23, 2021, from Angkatan Kerja: https://sirusa.bps.go.id/sirusa/index.php/indikator/47
  13. BPS. (2021). SIRUSA. Retrieved Oktober 14, 2021, from Tingkat Pengangguran Terbuka (TPT): https://sirusa.bps.go.id/sirusa/index.php/indikator/44
  14. BPS. (2021). Tingkat Pengangguran Terbuka (TPT). Retrieved Oktober 14, 2021, from Badan Pusat Statistik Sirusa: https://sirusa.bps.go.id/sirusa/index.php/indikator/44
  15. Caraka, R. E., & Yasin, H. (2017). Geographically weighted regression (gwr) Sebuah Pendekatan Regresi Geografis. Yogyakarta: Mobius
  16. Draper, N., & Smith, H. (1966). Applied Regression Analysis (Second Edition). (B. Sumantri, Trans.) John willey & Sons
  17. Draper, N., & Sumantri, H. S. (1992). Analisis Regresi Terapan Edisi Kedua. Jakarta: Gramedia Pustaka Utama
  18. Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). GEOGRAPHICALLY WEIGHTED REGRESSION the analysis of spatially varying relationship. Chichester: John Wiley and sons
  19. Gujarati, D. (1978). BASIC ECONOMETRICS. (S. Zein, Trans.) New York: McGraw-Hill. Gujarati, D. N. (2003). Basic Econometrics Fourth Edition. New york: McGraw-Hill
  20. Gujarati, D., & Zein, S. (1978). EKONOMETRIKA DASAR. New York: McGraw-Hill. Halicioglu, F. (2011). Modeling life expectancy in Turkey. Elsevier, 2750-2082
  21. LeSage, J. P. (2001). A Family of Geographically Weighted Regression Models
  22. Departement of Economics University of Toledo
  23. Leung, Y., Mei, C.-L., & Zang, W.-X. (2000). Statistical tests for Spatisal nonstationarity based on the geographically weighted regression model. Environment and Palnning A, 9-32
  24. Purhadi, & Yasin, H. (2012). Mixed Geographically Weighted Regression Model (Case Study: the Percentage of Poor Haouseholds in Mojokerto 2008). European Journal of Scientific Research, 188-196
  25. Razali, N. M., & Yap, B. w. (2011). Power Comparisons of Shapiro-wilk, Kolmogorov- Smirnov, Lilliefors and Anderson-darling Tests. Journal of Statistical Modeling and Analytics, 21-33
  26. Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, 39-42
  27. Widayaka, P. G. (2016). Pendekatan Mixed Geographically Weighted Regression Untuk Pemodelan Pertumbuhan Ekonomi Menurut Kabupaten/Kota Di Jawa Tengah. Jurnal gaussian, 727-736

Last update:

No citation recorded.

Last update:

No citation recorded.