skip to main content

IMPLEMENTASI ALGORITMA FUZZY C-MEANS DAN FUZZY POSSIBILISTICS C-MEANS UNTUK KLASTERISASI DATA TWEETS PADA AKUN TWITTER TOKOPEDIA

Ghina Nabila Saputro Putri  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
*Dwi Ispriyanti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tatik Widiharih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Social media has become the most popular media, which can be accessed by young to old age. Twitter became one of the effective media and the familiar one used by the public, thus making the company make Twitter one of the promotional tools, one of which is Tokopedia. The research aims to group tweets uploaded by @tokopedia Twitter accounts based on the type of tweets content that gets a lot of retweets and likes by followers of @tokopedia. Application of text mining to cluster tweets on the @tokopedia Twitter account using Fuzzy C-Means and Fuzzy Possibilistic C-Means algorithms that viewed the accuracy comparison of both methods used the Modified Partition Coefficient (MPC) cluster validity. The clustering process was carried out five times by the number of clusters ranging from 3 to 7 clusters. The results of the study showed the Fuzzy C-Means method is a better method compared to the Fuzzy Possibilistic C-Means method in clustering data tweets, with the number of clusters formed is 4. The content type formed is related to promo, discount, cashback, prize quizzes, and event promotions organized by Tokopedia. Content with the highest average number of retweets and likes is about automotive deals, sports tools, and merchandise offerings. So, that PT Tokopedia can use this content type as a tool for advertising on Twitter because it gets more likes by followers of @tokopedia.

Keywords: Data Tweets, Clustering, Fuzzy C-Means, Fuzzy Possibilistics C-Means, Modified Partition Coefficient.

Fulltext View|Download
Keywords: Data Tweets, Clustering, Fuzzy C-Means, Fuzzy Possibilistics C-Means, Modified Partition Coefficient.

Article Metrics:

  1. Castella, Q. & Sutton, C., 2014. Word Storms: Multiples of Word Clouds for Visual Comparison of Documents. Seoul, s.n
  2. Chaudhuri, A., 2015. Intuitionistic Fuzzy Possibilistic C Means Clustering Algorithms. Advances in Fuzzy Systems, pp. 1-17
  3. Feldman, R. & Sanger, J., 2007. The Text Mining Handbook: Advances Approaches in Analyzing Unstructured Data. New York: Cambridge University Press
  4. Hanifah, R. & Nurhasanah, I. S., 2018. Implementasi Web Crawling untuk Mengumpulkan Informasi Wisata Kuliner di Bandar Lampung. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), Oktober, Volume 5, No. 5, pp. 531-536
  5. Kusumadewi, S. & Purnomo, H., 2013. Aplikasi Logika Fuzzy: Untuk Pendukung Keputusan. 2 ed. Yogyakarta: Graha Ilmu
  6. McNaught, C. & Lam, P., 2010. Using Wordle as a Supplementary Research Tool. The Qualitative Report, May, Volume 15 Number 3 , pp. 630-643
  7. Nurjannah, M., H. & Astuti, I. F., 2013. Penerapan Algoritma Term Frequency-Inverse Document Frequency (TF-IDF) untuk Text Mining. Jurnal Informatika Mulawarman, Volume 8, No. 3, pp. 110-113
  8. Siyamto, Y., 2017. Pemanfaatan Data Mining dengan Metode Clustering. Media Informatika Budidarma, Volume 1 No 2, pp. 28-31
  9. Suleman, A., 2015. A new perspective of modified partition coefficient. Pattern Recognition Letters, Volume 56, pp. 1-6
  10. Whiting, A. & Williams, D., 2013. Why people use social media: a uses and gratifications approach. Qualitative Market Research: An International Journal, Volume 16 No. 4, pp. 362-369
  11. Yan, J., 2009. Text Representation. Encyclopedia of Database System

Last update:

No citation recorded.

Last update:

No citation recorded.