slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
APLIKASI NAÏVE BAYES CLASSIFIER (NBC) PADA KLASIFIKASI STATUS GIZI BALITA STUNTING DENGAN PENGUJIAN K-FOLD CROSS VALIDATION | Arisandi | Jurnal Gaussian skip to main content

APLIKASI NAÏVE BAYES CLASSIFIER (NBC) PADA KLASIFIKASI STATUS GIZI BALITA STUNTING DENGAN PENGUJIAN K-FOLD CROSS VALIDATION

Riza Rizqi Robbi Arisandi  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
*Budi Warsito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Arief Rachman Hakim  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The case of stunting in Indonesia is a problem that has been discussed for a long time. One of many efforts to overcome this problem is through an accelerated stunting reduction program to improve the nutritional status of the community and also to reduce the prevalence of stunting or stunted toddlers. Generally, the index used to determine the nutritional status of stunting toddlers height compared to age. This study aims to identify the classification results, evaluate the model, and predict the nutritional status of stunting toddlers using the Naïve Bayes Classifier algorithm with K-Fold Cross Validation testing. The data processing system used is the GUI-R (Graphical User Interface) in order to facilitate the analysis process by implementing the Shiny Package in the Rstudio program. The results of accuracy using Naïve Bayes Classifier with 10-Fold Cross Validation test obtained the highest accuracy on the 6th iteration with an accuracy 94.39%, while the lowest accuracy on the 8th iteration with an accuracy 82.08%. Overall, the average accuracy in each iteration is 88.46%, so it can be concluded that Naïve Bayes Classifier model considered good enough to classified data on the nutritional status of stunting toddlers.

Keywords: Stunting, Data Mining, Naïve Bayes Classifier, K-Fold Cross Validation, Shiny Package

Fulltext View|Download
Keywords: Stunting; Data Mining; Naïve Bayes Classifier; K-Fold Cross Validation; Shiny Package

Article Metrics:

  1. Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., & Amirat, Y. (2015). Physical human activity recognition using wearable sensors. Sensors, 15(12), 31314–31338
  2. Indriani, A. (2014). Klasifikasi Data Forum dengan menggunakan Metode Naï ve Bayes Classifier. Seminar Nasional Aplikasi Teknologi Informasi (SNATI), 1(1)
  3. Kabir, A., & Hasan, A. (2017). Analisis sentimen data kritik dan saran pelatihan aplikasi teknologi informasi (pati) menggunakan algoritma support vector machine. University of Muhammadiyah Malang
  4. Kemenkes RI. (2011). KEPMENKES RI Tentang Standar Antropometri Penilaian Status Gizi Anak. In Jornal de Pediatria (Vol. 95, Issue 4, p. 41)
  5. Kurniawan, T. (2017). Implementasi Text Mining pada Analisis Sentimen Pengguna Twitter Terhadap Media Mainstream Menggunakan Naïve Bayes Classifier dan Support Vector Machine. Institut Teknologi Sepuluh Nopember
  6. Organization, W. H. (2006). WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. World Health Organization
  7. Putri, R. A., Sendari, S., & Widiyaningtyas, T. (2018). Classification of toddler nutrition status with anthropometry calculation using Naïve Bayes Algorithm. 2018 International Conference on Sustainable Information Engineering and Technology (SIET), 66–70
  8. Rohani, A., Taki, M., & Abdollahpour, M. (2018). A novel soft computing model (Gaussian process regression with K-Fold Cross Validation) for daily and monthly solar radiation forecasting (Part: I). Renewable Energy, 115, 411–422
  9. Supariasa, I. D. M., Bakri, B., & Fajar, I. (2016). Penilaian Status Gizi. jakarta: Buku Kedokteran EGC
  10. Tripathy, A., Agrawal, A., & Rath, S. K. (2016). Classification of sentiment reviews using n-gram machine learning approach. Expert Systems with Applications, 57, 117–126

Last update:

No citation recorded.

Last update:

No citation recorded.