skip to main content

KLASTERISASI PROVINSI DI INDONESIA BERDASARKAN FAKTOR PENYEBARAN COVID-19 MENGGUNAKAN MODEL-BASED CLUSTERING t-MULTIVARIAT

Nor Hamidah  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
*Rukun Santoso  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Agus Rusgiyono  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The spread of Covid-19 had a significant impact in all sectors. Enforcement policies from the government that are appropriate with the conditions for the spread of the virus that are needed to prevent a bigger impact. Clusteritation by province based on data on the spread of Covid-19 is important for the government to set appropriate policies in order to prevent the spread of Covid-19. The data used include data on population density, testing rate, proportion of population 50 years and over, and proportion of population diligently hand-washing in each province. The data factors for the spread of Covid-19 tend to overlap and there are outliers in the data which causes the data not normally distributed. In this study, Model-Based Clustering t-multivariate was used for data clustering. The results show that using Integrated Completed Likelihood, two groups of optimal cluster were obtained. The second cluster has a higher risk of spreading Covid-19 than the first cluster.

 

Keywords : Covid-19, Clustering, Model-Based Clustering t-Multivariat

Fulltext View|Download
Keywords: Covid-19, Clustering, Model-Based Clustering t-Multivariat

Article Metrics:

  1. Agustini, M. (2017) Model-Based Clustering dengan Distribusi t Multivariat Menggunakan Kriteria Integrated Completed Likelihood dan Minimum Message Length ( Pengelompokan Provinsi di Indonesia Menurut Indikator Pasar Tenaga Kerja Tahun 2012-2015). Institut Teknologi Sepuluh Nopember
  2. Andrews, J. L. and McNicholas, P. D. (2012) ‘Model-Based Clustering, Classification, and Discriminant Analysis via Mixtures of Multivariate t-distributions: The tEIGEN Family’, Statistics and Computing, 22(5), pp. 1021–1029. doi: 10.1007/s11222-011-9272-x
  3. Ates, C. et al. (2019) ‘Comparison of Test Statistics of Nonnormal and Unbalanced Samples for Multivariate Analysis of Variance in terms of Type-I Error Rates’, Computational and Mathematical Methods in Medicine, 2019, p. 8. doi: 10.1155/2019/2173638
  4. Budiyanti, E. (2020) ‘Dampak Virus Corona Terhadap Sektor Perdagangan dan Pariwisata Indonesia’, Info Singkat (Kajian Singkat Terhadap Isu Aktual dan Strategis), XII(4), pp. 19–24
  5. Hair, J. F. et al. (2013) Multivariate Data Analysis. 7th Editio. Pearson Education Limited
  6. Johnson, R. A. and Wichern, D. W. and others (2007) Applied Multivariate Statistics. 6th Editio. Pearson Education, Inc
  7. Kaiser, H. F. (1974) ‘An index of factorial simplicity’, Psychometrika, pp. 31–36
  8. Karo, M. B. (2020) ‘Perilaku Hidup Bersih dan Sehat ( PHBS ) Strategi Pencegahan Penyebaran Virus Covid-19’, Prosiding Seminar Nasional Hardiknas, pp. 1–4
  9. Pardede, T. and Prasetyo, B. (2012) Kajian Metode Berbasis Model Pada Analisis Cluster dengan Perangkat Lunak Mclust
  10. Priyadarsini, S. L. and Suresh, M. (2020) ‘Factors influencing the epidemiological characteristics of pandemic COVID 19 : A TISM approach Factors in fl uencing the epidemiological characteristics of pandemic COVID 19’, International Journal of Healthcare Management, 13(2), pp. 89–98. doi: 10.1080/20479700.2020.1755804
  11. Rosyanti, L. and Hadi, I. (2020) ‘Dampak Psikologis dalam Memberikan Perawatan dan Layanan Kesehatan Pasien COVID-19 pada Tenaga Profesional Kesehatan’, Health Information Jurnal Penelitian, 12(1), pp. 107–130. doi: 10.36990/hijp.vi.191
  12. Roy, S. and Ghosh, P. (2020) ‘Factors affecting COVID-19 infected and death rates inform lockdown-related policymaking’, PLoS ONE, 15(10), pp. 1–18. doi: 10.1371/journal.pone.0241165
  13. Velasco, J. M., Tseng, W. and Chang, C. (2021) ‘Factors Affecting the Cases and Deaths of COVID-19 Victims’, International Journal of Environmental Research and Public Health, 18, p. 674. doi: https://doi.org/10.3390/ijerph18020674
  14. Yamali, F. R. and Putri, R. N. (2020) ‘Dampak Pandemi Covid-19 Terhadap Ekonomi Indonesia’, Ekonomis: Journal of Economics and Business, 4(2), pp. 384–388. doi: 10.33087/ekonomis.v4i2.179

Last update:

No citation recorded.

Last update:

No citation recorded.