BibTex Citation Data :
@article{J.Gauss34004, author = {Fadhilla Tamardina and Hasbi Yasin and Dwi Ispriyanti}, title = {ANALISIS SENTIMEN REVIEW APLIKASI CRYPTOCURRENCY MENGGUNAKAN ALGORITMA MAXIMUM ENTROPY DENGAN METODE PEMBOBOTAN TF, TF-IDF DAN BINARY}, journal = {Jurnal Gaussian}, volume = {11}, number = {1}, year = {2022}, keywords = {Cryptocurrency, Binary, Term Frequency, Term Frequency-Inverse Document Frequency, Maximum Entropy}, abstract = { Pandemi COVID-19 yang belum berhenti menyebabkan kondisi ekonomi Indonesia kian memburuk. Masyarakat yang terkena dampak pemotongan upah akibat pandemi harus mencari cara untuk mendapatkan pendapatan pasif. Salah satu cara untuk mendapatkan hal tersebut adalah berinvestasi. Cryptocurrency adalah salah satu instrumen investasi berbasis aplikasi yang memiliki return tinggi. Aplikasi Pintu adalah aplikasi pertama yang menyediakan fasilitas mobile apps pada penggunanya. Aplikasi yang dirilis pada tahun 2020 ini sudah memiliki banyak ulasan yang diberikan oleh penggunanya. Ulasan ini dibutuhkan untuk mengetahui apakah ulasan yang diberikan bersifat positif atau negatif. Analisis sentimen pada aplikasi Pintu dipilih untuk melihat sentimen pengguna yang akan dibagi menjadi dua kelas sentimen yaitu positif dan negatif. Klasifikasi dilakukan dengan algoritma Maximum Entropy dengan perbandingan metode pembobotan kata Term Frequency (TF), Term Frequency-Inverse Document Frequency (TF-IDF) dan Binary . Model klasifikasi terbaik dilihat berdasarkan nilai akurasi yang dievaluasi dengan 5- Fold Cross Validation. Hasil klasifikasi model Maximum Entropy dengan Binary memiliki tingkat akurasi sebesar 83,21% sedangkan hasil klasifikasi model Maximum Entropy dengan Term Frequency hanya sebesar 83,01% dan model Maximum Entropy dengan Term Frequency-Inverse Document Frequency hanya sebesar 83,20%. Hal ini menunjukkan bahwa tidak terdapat perbedaan yang signifikan pada model algoritma Maximum Entropy dengan metode pembobotan kata Term Frequency (TF), Term Frequency-Inverse Document Frequency (TF-IDF) dan Binary . Keywords : Cryptocurrency, Binary, Term Frequency, Term Frequency-Inverse Document Frequency, Maximum Entropy }, issn = {2339-2541}, pages = {1--10} doi = {10.14710/j.gauss.v11i1.34004}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/34004} }
Refworks Citation Data :
Pandemi COVID-19 yang belum berhenti menyebabkan kondisi ekonomi Indonesia kian memburuk. Masyarakat yang terkena dampak pemotongan upah akibat pandemi harus mencari cara untuk mendapatkan pendapatan pasif. Salah satu cara untuk mendapatkan hal tersebut adalah berinvestasi. Cryptocurrency adalah salah satu instrumen investasi berbasis aplikasi yang memiliki return tinggi. Aplikasi Pintu adalah aplikasi pertama yang menyediakan fasilitas mobile apps pada penggunanya. Aplikasi yang dirilis pada tahun 2020 ini sudah memiliki banyak ulasan yang diberikan oleh penggunanya. Ulasan ini dibutuhkan untuk mengetahui apakah ulasan yang diberikan bersifat positif atau negatif. Analisis sentimen pada aplikasi Pintu dipilih untuk melihat sentimen pengguna yang akan dibagi menjadi dua kelas sentimen yaitu positif dan negatif. Klasifikasi dilakukan dengan algoritma Maximum Entropy dengan perbandingan metode pembobotan kata Term Frequency (TF), Term Frequency-Inverse Document Frequency (TF-IDF) dan Binary. Model klasifikasi terbaik dilihat berdasarkan nilai akurasi yang dievaluasi dengan 5-Fold Cross Validation. Hasil klasifikasi model Maximum Entropy dengan Binary memiliki tingkat akurasi sebesar 83,21% sedangkan hasil klasifikasi model Maximum Entropy dengan Term Frequency hanya sebesar 83,01% dan model Maximum Entropy dengan Term Frequency-Inverse Document Frequency hanya sebesar 83,20%. Hal ini menunjukkan bahwa tidak terdapat perbedaan yang signifikan pada model algoritma Maximum Entropy dengan metode pembobotan kata Term Frequency (TF), Term Frequency-Inverse Document Frequency (TF-IDF) dan Binary.
Keywords: Cryptocurrency, Binary, Term Frequency, Term Frequency-Inverse Document Frequency, Maximum Entropy
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics