BibTex Citation Data :
@article{J.Gauss33996, author = {Ghina Putri and Dwi Ispriyanti and Tatik Widiharih}, title = {IMPLEMENTASI ALGORITMA FUZZY C-MEANS DAN FUZZY POSSIBILISTICS C-MEANS UNTUK KLASTERISASI DATA TWEETS PADA AKUN TWITTER TOKOPEDIA}, journal = {Jurnal Gaussian}, volume = {11}, number = {1}, year = {2022}, keywords = {Data Tweets, Clustering, Fuzzy C-Means, Fuzzy Possibilistics C-Means, Modified Partition Coefficient.}, abstract = { Social media has become the most popular media, which can be accessed by young to old age. Twitter became one of the effective media and the familiar one used by the public, thus making the company make Twitter one of the promotional tools, one of which is Tokopedia. The research aims to group tweets uploaded by @tokopedia Twitter accounts based on the type of tweets content that gets a lot of retweets and likes by followers of @tokopedia. Application of text mining to cluster tweets on the @tokopedia Twitter account using Fuzzy C-Means and Fuzzy Possibilistic C-Means algorithms that viewed the accuracy comparison of both methods used the Modified Partition Coefficient (MPC) cluster validity. The clustering process was carried out five times by the number of clusters ranging from 3 to 7 clusters. The results of the study showed the Fuzzy C-Means method is a better method compared to the Fuzzy Possibilistic C-Means method in clustering data tweets, with the number of clusters formed is 4. The content type formed is related to promo, discount, cashback, prize quizzes, and event promotions organized by Tokopedia. Content with the highest average number of retweets and likes is about automotive deals, sports tools, and merchandise offerings. So, that PT Tokopedia can use this content type as a tool for advertising on Twitter because it gets more likes by followers of @tokopedia. Keywords : Data Tweets , Clustering , Fuzzy C-Means , Fuzzy Possibilistics C-Means , Modified Partition Coefficient . }, issn = {2339-2541}, pages = {86--98} doi = {10.14710/j.gauss.v11i1.33996}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/33996} }
Refworks Citation Data :
Social media has become the most popular media, which can be accessed by young to old age. Twitter became one of the effective media and the familiar one used by the public, thus making the company make Twitter one of the promotional tools, one of which is Tokopedia. The research aims to group tweets uploaded by @tokopedia Twitter accounts based on the type of tweets content that gets a lot of retweets and likes by followers of @tokopedia. Application of text mining to cluster tweets on the @tokopedia Twitter account using Fuzzy C-Means and Fuzzy Possibilistic C-Means algorithms that viewed the accuracy comparison of both methods used the Modified Partition Coefficient (MPC) cluster validity. The clustering process was carried out five times by the number of clusters ranging from 3 to 7 clusters. The results of the study showed the Fuzzy C-Means method is a better method compared to the Fuzzy Possibilistic C-Means method in clustering data tweets, with the number of clusters formed is 4. The content type formed is related to promo, discount, cashback, prize quizzes, and event promotions organized by Tokopedia. Content with the highest average number of retweets and likes is about automotive deals, sports tools, and merchandise offerings. So, that PT Tokopedia can use this content type as a tool for advertising on Twitter because it gets more likes by followers of @tokopedia.
Keywords: Data Tweets, Clustering, Fuzzy C-Means, Fuzzy Possibilistics C-Means, Modified Partition Coefficient.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics