skip to main content

PEMODELAN INDEKS HARGA PROPERTI RESIDENSIAL DI INDONESIA MENGGUNAKAN METODE GENERALIZED SPACE TIME AUTOREGRESSIVE

Syazwina Aufa  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
*Rukun Santoso  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Suparti Suparti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Generalized Space Time Autoregressive (GSTAR) is a model used for space time data analysis. Space time data is data related to events at previous times and different locations. GSTAR is an expansion of the Space Time Autoregressive (STAR) method. The STAR method is only suitable for homogeneous locations while GSTAR can be used for heterogeneous locations. This research uses Residensial Property Price Index (IHPR) data. IHPR data is in the form of a multivariate time series consisting of 18 cities/regions with a certain time span. In this study, the analysis of IHPR data is carried out by looking at the relationship between the previous time and other cities/regions. Therefore, the method that can be used is GSTAR method. Analysis of IHPR data in each city/region can help increase the supply of housing, thereby reducing the number of backlogs. The backlog of houses in Indonesia is still relatively high. Backlog is an indicator that is often used by the government to measure the number of housing needs in Indonesia. Based on the fulfillment of the assumptions and the smallest MSE value, the best model obtained is GSTAR(4;1,1,1,1) using cross-correlation normalized weight. The largest IHPR data on forcasting results is in the cities of Makassar, Manado, and Surabaya while the smallest IHPR data is in the city of Balikpapan. The GSTAR method produces forcasted data that is close to the actual data so it is good to use.

Keywords : GSTAR, OLS, IHPR

Fulltext View|Download
Keywords: GSTAR, OLS, IHPR

Article Metrics:

  1. Bekti, R.D. dan Pratiwi, N. 2016. Metode Spatio-Temporal Untuk Peramalan. Institut Sains & Teknologi Akprind Yogyakarta. Yogyakarta: 42/SPP/LPPM/PL/IV/2016
  2. Bohling, G. 2006. Classical Normal-Based Discriminant Analysis, Scientist, (March), pp. 1–24
  3. Buhaerah, P. 2019. Pengaruh Kredit Pemilikan Rumah terhadap Keterjangkauan Harga Properti Residensial, Kajian Ekonomi Keuangan, 3(3), pp. 182–197
  4. Departemen Statistik. 2021. Survey Harga Properti Residensial di Pasar Primer- Triwulan III 2021. https://www.bi.go.id/id/publikasi/laporan/Pages/SHPR-Triwulan-III-2021.aspx. Diakses pada 1 September 2021
  5. Faizah, L.A. dan Setiawan. 2013. Pemodelan Inflasi di Kota Semarang, Yogyakarta dan Surakarta dengan Pendekatan GSTAR. Jurnal Sains dan Seni Pomits. Vol.2. No.2
  6. Halim, S. dan Chandra, A. (2011). Pemodelan Time Series Multivariat secara Automatis, Jurnal Teknik Industri, 13(1). doi: 10.9744/jti.13.1.19-26
  7. Laksono, M.Y. 2022. Backlog Rumah Membengkak Jadi 12,75 Juta, Apa Langkah Pemerintah?. Kompas.com. https://www.kompas.com/properti/read/2022/02/06/151343121/backlog-rumah-membengkak-jadi-1275-juta-apa-langkah-pemerintah?page=all. Diakses: 20 Maret 2022
  8. Pfeifer, P. E. dan Deutsch, S. J. 1980. A Three Stage Iterative Procedure for Space- Time Modeling, Technometrics 22, 35-47
  9. Ruchjana, B. N., Borovkova, S. A., dan Lopuhaa, H. P. 2012. Least Squares Estimation of Generalized Space Time AutoRegressive (GSTAR) Model and its Properties, AIP Conference Proceedings, 1450(October 2014), pp. 61–64. doi: 10.1063/1.4724118
  10. Shofiyah, M.A. 2009. Peramalan Data Produksi Gas di Joint Operating Body Pertamina Petrochina East Java (JOB P-PEJ) dengan Model GSTAR dan ARIMA
  11. Suhartono dan Atok, R.M. 2006. Pemilihan Bobot Lokasi yang Optimal pada model
  12. GSTAR. Presented at National Mathematics Conference XIII. Semarang: Universitas Negeri Semarang
  13. Suhartono dan Subanar. 2007. Some Comments on the Theorem Providing Stasionerity Condition for GSTAR Models in The Paper by Borovkova et al. Journal of The Indonesian Mathematical Siciety (MIHMI), No.13, Vo.1: 44-52
  14. Talungke, Y., Nainggolan, N., dan Hatidja, D. 2015. Model Generalized Space Time Autoregressive (GSTAR) dengan Analisis Data Menggunakan Software R, d’CARTESIAN, 4(2), p. 122. doi: 10.35799/dc.4.2.2015.8649
  15. Tsay, R.S. 2005. Analysis of Financial Time series. John Wiley & Sons. New Jersey
  16. Wei, W. W. S. 2006. Time Series Analysis : Univariate and Multivariate Methods, (January 1989). doi: 10.2307/2289741
  17. Wutsqa, D. U., Suhartono, dan Sutijo, B. 2010. Generalized Space-Time Autoregressive Modeling, Procee-dings of the 6th IMT-GT Conference on Mathematics, Statistics and its Application (ICMSA 2010, University Tunku Abdul Rahman, Malaysia
  18. Zahro, J. 2017. Price Estimation of Red Chili Pepper by Using Generalized Space ime Autoregressive (G-STAR)’, (July). https://www.researchgate.net/publication/318110071

Last update:

No citation recorded.

Last update:

No citation recorded.