skip to main content

ANALISIS SENTIMEN GOJEK PADA MEDIA SOSIAL TWITTER DENGAN KLASIFIKASI SUPPORT VECTOR MACHINE (SVM)

*Nur Fitriyah  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Budi Warsito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Di Asih I Maruddani  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2020 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Appearance of PT Aplikasi Karya Anak Bangsa or as known as Gojek since 2015 give a convenience facility to people in Indonesia especially in daily activities. Sentiment analysis on Twitter social media can be the option to see how Gojek users respond to the services that have been provided. The response was classified into positive sentiment and negative sentiment using Support Vector Machine method with model evaluation 10-fold cross validation. The kernel used is the linear kernel and the RBF kernel. Data labeling can be done with manually and sentiment scoring. The test results showed that the RBF kernel gets overall accuracy and the highest kappa accuracy on manual data labeling and sentiment scoring. On manual data labeling, the overall accuracy is 79.19% and kappa accuracy is 16.52%. While the labeling of data with sentiment scoring obtained overall accuracy of 79.19% and kappa accuracy of 21%. The greater overall accuracy value and kappa accuracy obtained, the better performance of the classification model.

 

Keywords: Gojek, Twitter, Support Vector Machine, overall accuracy, kappa accuracy

Fulltext View|Download
Keywords: Gojek, Twitter, Support Vector Machine, overall accuracy, kappa accuracy

Article Metrics:

  1. Arisondang, V., Sudarsono, B. dan Prasetyo,Y. 2015. Klasifikasi Tutupan Lahan Menggunakan Metode Segmentasi Berbasis Algoritma Multiresolusi. Jurnal Geodesi Undip Volu. 4, No. 1, Hal: 9-19
  2. Faret, J. dan Reitan, J. 2015. Twitter Sentiment Analysis: Exploring the Effects of Linguistic Negation. Norwegia: Norwegian University of Science and Technology,
  3. Feldman, R dan Sanger, J. 2007. The Text Mining Handbook. New York: Cambridge University Press
  4. Ghag, K. V. dan Shah, K. 2015. Comparative Analysis of Effect of Stopwords Removal on Sentiment Classification. International Conference on Computer, Communication and Control (IC4). India: Institute of Electrical and Electronics Engineers (IEEE)
  5. Gunn, S.R. 1998. Support Vector Machine for Classification and Regression. Southsmpton: Image Speech & Intelligent Systems Group University of Southampton
  6. Gupta, V dan Lehal, G. S. 2009. A Survey of Text Mining Techniques and Applications. Jurnal Emerging Technologies in Web Intelligence Vol.1, No.1: Hal 60-76
  7. Hootsuite. 2019. Local Insights. https://datareportal.com/reports/digital-2019-indonesia. Diakses: 7 April 2019
  8. Hsu, C. W., Chang, C. C., dan Lin, C.J. 2010. A Practical Guide to Support Vector Classification. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf. Diakses: 21 Juni 2019
  9. Katadata. 2019. Persaingan Ketat Gojek dan Grab Menjadi SuperApp. https://katadata.co.id/telaah/2019/04/16/persaingan-ketat-gojek-dan-grab-menjadi-superapp. Diakses: 23 Juli 2019
  10. Keerthi, S.S. dan Lin, C. J. 2003. Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel. Neural Computation Vol. 15, No.7: 1667-1689
  11. Kumar, V dan Wu, X. 2009. The Top Ten Algorithms in Data Mining. Boca Raton: Taylor & Francis Group
  12. Nurhuda, F., Sihwi, S. W., dan Doewes, A. 2013. Analisis Sentimen Masyarakat terhadap Calon Presiden Indonesia 2014 berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal IT SMART Vol. 2, No. 2, Hal: 35-42
  13. Rofiqoh, U., Perdana, R. S., dan Fauzi, M. A. 2017. Analisis Sentimen Tingkat Kepuasan Pengguna Penyedia Layanan Telekomunikasi Seluler Indonesia Pada Twitter Dengan Metode Support Vector Machine dan Lexicon Based Features. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol. 1, No. 12, Hal: 1725-1732
  14. Rozi, I. F., Pramono, S. H., dan Dahlan, E. A. 2012. Implementasi Opinion Mining (Analisis Sentimen) untuk Ekstraksi Data Opini Publik pada Perguruan Tinggi. Jurnal Electrics, Electronics, Communications, Controls, Informatics, Systems (EECCIS) Vol.6, No.1, Hal: 37-43
  15. Salton, G. dan Buckley, C. 1988. Term-Weighting Approaches in Automatic Text Retrieval. Jurnal Information Processing and Management Vol.24, No. 5, Hal: 512-523
  16. Santosa, B. 2007. Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu
  17. Suyanto. 2019. Data Mining: untuk Klasifikasi dan Klasterisasi Data Edisi Revisi. Bandung: Informatika
  18. Vapnik, V. dan Cortes, C. 1995. Support Vector Networks. Jurnal Machine Learning, 20, 273-297
  19. Wahid, D. H. dan Azhari. 2016. Peringkasan Sentimen Esktraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity. Indonesian Journal of Computing and Cybernetics Systems (IJCCS), Vol. 10 , No. 2, Hal: 207-218
  20. Yates, R. B., dan Neto, B. R. 1999. Modern Information Retrieval. New York: ACM Press

Last update:

No citation recorded.

Last update:

No citation recorded.