KLASIFIKASI CITRA DIGITAL BUMBU DAN REMPAH DENGAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN)

*Isna Wulandari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Hasbi Yasin  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tatik Widiharih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Received: 20 Apr 2020; Published: 30 Aug 2020.
DOI: https://doi.org/10.14710/j.gauss.v9i3.27416 View
Perjanjian Pengalihan Hak Cipta
Subject
Type Research Instrument
  Download (618KB)    Indexing metadata
Open Access Copyright 2020 Jurnal Gaussian
License URL: http://creativecommons.org/licenses/by-nc-sa/4.0

Citation Format:
Abstract

The recognition of herbs and spices among young generation is still low. Based on research in SMK 9 Bandung, showed that there are 47% of students that did not recognize herbs and spices. The method that can be used to overcome this problem is automatic digital sorting of herbs and spices using Convolutional Neural Network (CNN) algorithm. In this study, there are 300 images of herbs and spices that will be classified into 3 categories. It’s ginseng, ginger and galangal. Data in each category is divided into two, training data and testing data with a ratio of 80%: 20%. CNN model used in classification of digital images of herbs and spices is a model with 2 convolutional layers, where the first convolutional layer has 10 filters and the second convolutional layer has 20 filters. Each filter has a kernel matrix with a size of 3x3. The filter size at the pooling layer is 3x3 and the number of neurons in the hidden layer is 10. The activation function at the convolutional layer and hidden layer is tanh, and the activation function at the output layer is softmax. In this model, the accuracy of training data is 0.9875 and the loss value is 0.0769. The accuracy of testing data is 0.85 and the loss value is 0.4773. Meanwhile, testing new data with 3 images for each category produces an accuracy of 88.89%.

 

Keywords: image classification, herbs and spices, CNN.

 

Note: This article has supplementary file(s).

Keywords: image classification, herbs and spices, CNN.

Article Metrics:

  1. Abhirawa, H., Jondri, & Arifianto, A. 2017. Pengenalan Wajah Menggunakan Convolutional Neural Network. e-Proceding of Engineering Vol. 4, No. 3 : Hal. 4907-4916
  2. Fikriya, Z. A., Irawan, M.I., & Soetrisno. 2017. Implementasi Extreme Learning Machine untuk Pengenalan Object Citra Digital. Jurnal Sains dan Seni ITS Vol. 6, No. 1 : Hal. A18-A23
  3. Hakim, L. 2015. Rempah dan Herba Kebun Pekarangan Rumah Masyarakat Keragaman Sumber Fitokarma dan Wisata Kesehatan-Kebugaran. Yogyakarta : Diandra Pustaka Indonesia
  4. Hikmatulloh, E., Lasmanawati, E., & Setiawati, T. 2017. Manfaat Pengetahuan Bumbu dan Rempah Pada Pengolahan Makanan Indonesia Siswa SMKN 9 Bandung. Media Pendidikan, Gizi dan Kuliner Vol. 6, No. 1 : Hal. 42-50
  5. Hu, F., Xia, G. S., Hu, J., & Zhang, L. 2015. Transferring Deep Convolutional Neural Network for Scene Classification of High-Resolution Image Sensing Imagery. Remote Sens : Hal. 14680-14707
  6. Ilahiyah, S., & Nilogiri, A. 2018. Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network. Jurnal Sistem & Teknologi Informasi Indonesia Vol. 3, No 2 : Hal. 49-56
  7. Santoso, A., & Ariyanto, G. 2018. Implementasi Deep Learning Berbasis Keras untuk Pengenalan Wajah. Jurnal Emitor Vol. 18, No. 01 : Hal. 15-21
  8. Warsito, B. 2009. Kapita Selekta Statistika Neural Network. Semarang : BP Undip Semarang