BibTex Citation Data :
@article{J.Gauss27416, author = {Isna Wulandari and Hasbi Yasin and Tatik Widiharih}, title = {KLASIFIKASI CITRA DIGITAL BUMBU DAN REMPAH DENGAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN)}, journal = {Jurnal Gaussian}, volume = {9}, number = {3}, year = {2020}, keywords = {image classification, herbs and spices, CNN.}, abstract = { The recognition of herbs and spices among young generation is still low. Based on research in SMK 9 Bandung, showed that there are 47% of students that did not recognize herbs and spices. The method that can be used to overcome this problem is automatic digital sorting of herbs and spices using Convolutional Neural Network (CNN) algorithm. In this study, there are 300 images of herbs and spices that will be classified into 3 categories. It’s ginseng, ginger and galangal. Data in each category is divided into two, training data and testing data with a ratio of 80%: 20%. CNN model used in classification of digital images of herbs and spices is a model with 2 convolutional layers, where the first convolutional layer has 10 filters and the second convolutional layer has 20 filters. Each filter has a kernel matrix with a size of 3x3. The filter size at the pooling layer is 3x3 and the number of neurons in the hidden layer is 10. The activation function at the convolutional layer and hidden layer is tanh, and the activation function at the output layer is softmax. In this model, the accuracy of training data is 0.9875 and the loss value is 0.0769. The accuracy of testing data is 0.85 and the loss value is 0.4773. Meanwhile, testing new data with 3 images for each category produces an accuracy of 88.89%. Keywords : image classification, herbs and spices, CNN. }, issn = {2339-2541}, pages = {273--282} doi = {10.14710/j.gauss.9.3.273-282}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/27416} }
Refworks Citation Data :
The recognition of herbs and spices among young generation is still low. Based on research in SMK 9 Bandung, showed that there are 47% of students that did not recognize herbs and spices. The method that can be used to overcome this problem is automatic digital sorting of herbs and spices using Convolutional Neural Network (CNN) algorithm. In this study, there are 300 images of herbs and spices that will be classified into 3 categories. It’s ginseng, ginger and galangal. Data in each category is divided into two, training data and testing data with a ratio of 80%: 20%. CNN model used in classification of digital images of herbs and spices is a model with 2 convolutional layers, where the first convolutional layer has 10 filters and the second convolutional layer has 20 filters. Each filter has a kernel matrix with a size of 3x3. The filter size at the pooling layer is 3x3 and the number of neurons in the hidden layer is 10. The activation function at the convolutional layer and hidden layer is tanh, and the activation function at the output layer is softmax. In this model, the accuracy of training data is 0.9875 and the loss value is 0.0769. The accuracy of testing data is 0.85 and the loss value is 0.4773. Meanwhile, testing new data with 3 images for each category produces an accuracy of 88.89%.
Keywords: image classification, herbs and spices, CNN.
Note: This article has supplementary file(s).
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics