skip to main content

PENERAPAN ANALISIS KLASTER K-MODES DENGAN VALIDASI DAVIES BOULDIN INDEX DALAM MENENTUKAN KARAKTERISTIK KANAL YOUTUBE DI INDONESIA (Studi Kasus: 250 Kanal YouTube Indonesia Teratas Menurut Socialblade)

*Ahmad Badruttamam  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Sudarno Sudarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Di Asih I Maruddani  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2020 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

YouTube is one of the most popular online platforms today. The popularity of YouTube has makes it an effective advertising medium. In April 2019, Socialblade released the top 250 YouTube channels in Indonesia based on their gradations with various characteristics. YouTube channel data will be grouped into several clusters to make it easier for advertisers to choose channels with characteristics as needed. The purpose of this study is to determine the best number of clusters and determine their characteristics. The method used is the k-Modes cluster analysis with values k = 3, 4, 5, ..., 8. The k-Modes method can group objects that have categorical type variables into relatively homogeneous groups. The best number of clusters (k) can be checked using the Davies Bouldin Index (DBI). Based on the analysis carried out, obtained the best number of six clusters with a Davies-Bouldin Index value of 1.080509. The most recommended cluster for advertising is cluster 6, which has grade A characteristics, gold title, and has an estimated annual income of 5 million USD < income ≤ 10 million USD.


Keywords: Youtube, Cluster Analysis, k-Modes, Categorical Data, Davies-Bouldin Index

Fulltext View|Download
Keywords: Youtube, Cluster Analysis, k-Modes, Categorical Data, Davies-Bouldin Index

Article Metrics:

  1. Agresti, A., 1996. An Introduction to Categorical Data Analiysis. Canada: John Wiley & Sons, Inc.
  2. Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E., 2014. Multivariate Data Analysis 7th. USA: Pearson
  3. Hilmi, M., N., 2015. Pemetaan Preferensi Mahasiswa Baru dalam Memilih Jurusan Menggunakan Artificial Neural Network (ANN) dengan Algoritma Self Organizing Maps (SOM). Jurnal Gaussian Vol. 4, No. 1: Hal. 53-60
  4. Huang, J. Z., 2009. Clustering Categorical Data with k-Modes, Hong Kong: IGI Global
  5. Huang, Z., 1997. A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining. Canberra: Cooperative Research Centre for Advanced Computational Systems
  6. Johnson, R. A. & Wichern, D. W., 2002. Applied Multivariate Statistical Analysis 5th. New Jersey: Pearson
  7. Mattjik, A. A. & Sumertajaya, I. M., 2011. Sidik Peubah Ganda dengan Menggunakan SAS. Bogor: IPB Press
  8. Permatadevi, M. A., Hendrawan, R. A., & Hafidz, I., 2013. Karakteristik Pelanggan Telepon Kabel Menggunakan Clustering SOM dan K-Means untuk Mengurangi Kesalahan Klasifikasi Pelanggan Perusahaan Telekomunikasi. Jurnal Teknik Pomits Vol. 1, No. 1 Hal. 1-6

Last update:

No citation recorded.

Last update:

No citation recorded.