BibTex Citation Data :
@article{J.Gauss28907, author = {Ahmad Badruttamam and Sudarno Sudarno and Di Asih Maruddani}, title = {PENERAPAN ANALISIS KLASTER K-MODES DENGAN VALIDASI DAVIES BOULDIN INDEX DALAM MENENTUKAN KARAKTERISTIK KANAL YOUTUBE DI INDONESIA (Studi Kasus: 250 Kanal YouTube Indonesia Teratas Menurut Socialblade)}, journal = {Jurnal Gaussian}, volume = {9}, number = {3}, year = {2020}, keywords = {Youtube, Cluster Analysis, k-Modes, Categorical Data, Davies-Bouldin Index}, abstract = { YouTube is one of the most popular online platforms today. The popularity of YouTube has makes it an effective advertising medium. In April 2019, Socialblade released the top 250 YouTube channels in Indonesia based on their gradations with various characteristics. YouTube channel data will be grouped into several clusters to make it easier for advertisers to choose channels with characteristics as needed. The purpose of this study is to determine the best number of clusters and determine their characteristics. The method used is the k-Modes cluster analysis with values k = 3, 4, 5, ..., 8. The k-Modes method can group objects that have categorical type variables into relatively homogeneous groups. The best number of clusters (k) can be checked using the Davies Bouldin Index (DBI). Based on the analysis carried out, obtained the best number of six clusters with a Davies-Bouldin Index value of 1.080509. The most recommended cluster for advertising is cluster 6, which has grade A characteristics, gold title, and has an estimated annual income of 5 million USD < income ≤ 10 million USD. Keywords : Youtube, Cluster Analysis, k -Modes, Categorical Data, Davies-Bouldin Index }, issn = {2339-2541}, pages = {263--272} doi = {10.14710/j.gauss.9.3.263-272}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/28907} }
Refworks Citation Data :
YouTube is one of the most popular online platforms today. The popularity of YouTube has makes it an effective advertising medium. In April 2019, Socialblade released the top 250 YouTube channels in Indonesia based on their gradations with various characteristics. YouTube channel data will be grouped into several clusters to make it easier for advertisers to choose channels with characteristics as needed. The purpose of this study is to determine the best number of clusters and determine their characteristics. The method used is the k-Modes cluster analysis with values k = 3, 4, 5, ..., 8. The k-Modes method can group objects that have categorical type variables into relatively homogeneous groups. The best number of clusters (k) can be checked using the Davies Bouldin Index (DBI). Based on the analysis carried out, obtained the best number of six clusters with a Davies-Bouldin Index value of 1.080509. The most recommended cluster for advertising is cluster 6, which has grade A characteristics, gold title, and has an estimated annual income of 5 million USD < income ≤ 10 million USD.
Keywords: Youtube, Cluster Analysis, k-Modes, Categorical Data, Davies-Bouldin Index
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics