skip to main content

VALUE at RISK (VaR) DAN CONDITIONAL VALUE at RISK (CVaR) DALAM PEMBENTUKAN PORTOFOLIO BIVARIAT MENGGUNAKAN COPULA GUMBEL

*Dina Rahma Prihatiningsih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Di Asih I Maruddani  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Rita Rahmawati  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2020 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

One way to minimize risk in investing is to form of portfolio by combining several stocks.Value at Risk (VaR) is a method for estimating risk but has a weakness that is VaR is incoherent because it does not have the subadditivity. To overcome the weakness of VaR, Conditional Value at Risk (CVaR) can use. Stock data is generally volatile, so ARIMA-GARCH is used to model it. The selection of ARIMA models on R software can be automatically using the auto.arima() function. Then Copula Gumbel is a method for modeling joint distribution and flexible because it does not require the assumption of normality and has the best sensitivity to high risk so that it is suitable for use in stock data.The first step in this research is to modeling Copula Gumbel-GARCH with the aim to calculate VaR and CVaR on the portfolio of PT Bank Mandiri Tbk (BMRI) and PT Indo Tambangraya Megah Tbk (ITMG). At the confidence level 99%, 95%, and 90% obtained the VaR results sequentially amounted to 3.977073%; 2.546167%; and 1.837288% and the CVaR results sequentially amounted to 4.761437%; 3.457014%; and 2.779182%. The worst condition is a loss with VaR and it is still possible if a worse condition occurs is a loss with CVaR so that investors can be more aware of the biggest loss that will be suffered.

Keywords: Value at Risk, Conditional Value at Risk, Auto ARIMA, Copula Gumbel.

Fulltext View|Download
Keywords: Value at Risk, Conditional Value at Risk, Auto ARIMA, Copula Gumbel.

Article Metrics:

  1. Bob, N.K. 2013. Value at Risk Estimation A GARCH-EVT-Copula Approach. Mathematical Statistics. 106(91). Stockhlom University. Swedia
  2. Damasari, A. 2015. Estimasi Value at Risk (VaR) dengan Metode Simulasi Monte Carlo – Copula Gumbel. Universitas Islam Negeri Sunan Kalijaga. Yogyakarta
  3. Genest, C. dan Favre, A. C. 2007. Everything You Always Wanted to Know about Copula Modelling but Were Afraid to Ask. Journal of Hydrologic Engineering. 12(4): 347-368
  4. Handini, J.A. 2018. Copula Frank pada Value at Risk (VaR) Pembentukan Portofolio Bivariat. Universitas Diponegoro. Semarang
  5. Hyndman, R.J. dan Khandakar, Y. 2008. Automatic Time Series Forecasting: The Forecast Package for R. Journal of Statistical Software. 27(3)
  6. Lisnawati, I dan Subekti, R. 2018. Estimasi Conditional Value at Risk (CVaR) pada Portofolio Menggunakan Copula Bersyarat. Universitas Negeri Yogyakarta. Yogyakarta
  7. Maruddani, D.A.I. 2019. Value at Risk untuk Pengukuran Risiko Investasi Saham: Aplikasi dengan Program R. Ponorogo: Wade Group
  8. Rahmawati, R., Rusgiyono, A., Hoyyi, A., dan Maruddani, D.A.I. 2019. Expected Shortfall dengan Simulasi Monte-Carlo untuk Mengukur Risiko Kerugian Petani Jagung. Media Statistika. 12(1): 117-128
  9. Saepudin, Y. 2017. Analisis Risiko Investasi Saham Tunggal Syariah dengan Value at Risk (VaR) dan Expected Shortfall (ES). Universitas Diponegoro. Semarang
  10. Susilowati, M. 2016. Analisis Kinerja Portofolio Optimal dengan Metode Mean-Gini. Universitas Diponegoro. Semarang
  11. Thomas. R. L. 1996. Modern Econometrics. Inggris: Addison Wesley
  12. Tsay, R.S. 2010. Analysis of Financial Time Series. 3rd Edition. Canada: John Wiley and Sons, Inc

Last update:

No citation recorded.

Last update:

No citation recorded.