skip to main content

ANALISIS ARIMA DAN WAVELET UNTUK PERAMALAN HARGA CABAI MERAH BESAR DI JAWA TENGAH

*Chrisentia Widya Ardianti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Rukun Santoso  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Sudarno Sudarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2020 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Time series is a type of data collected according to the sequence of times in a certain time span. Time series data can be used as a predictor of future conditions. Analysis of time series data, one of the ARIMA units, is a parametric method that requires an assumption to get valid results. Data stationarity is one of the factors that must be fulfilled. Wavelet is a non-parametric method that is able to represent time and frequency information simultaneously, so that it can analyze non-stationary data. This research presents forecasting the price of red chili in Central Java using ARIMA and wavelet with the approach of the Multiscale Autoregressive (MAR) model. The best model is the one with the smallest MSE value. The results showed that the ARIMA(0,1,1) model was said to be the best model with MSE = 2252142. However, because the assumption of normality is not fulfilled, an alternative process is done with wavelet. Wavelet approach results show that the MAR model Haar filter level (j) = 4 with MSE = 2175906 is better than Daubechies 4 filter 4 level (j) = 1 with MSE = 3999669. Therefore, the Haar wavelet is considered better in the time series analysis.

 

Keyword : ARIMA, wavelet, MAR, forecasting, MSE

Fulltext View|Download
Keywords: ARIMA, wavelet, MAR, forecasting, MSE

Article Metrics:

  1. Eriawati. 2015. Pemanfaatan Jenis Tumbuhan dari Famili Solanaceae sebagai Media Pembelajaran Biologi pada Sub Konsep Klasifikasi Tumbuhan di SMP Negeri 1 Simpang Tiga Kabupaten Aceh Besar. Prosiding Seminar Nasional Biotik. Aceh
  2. Hasan, I. 2002. Pokok-Pokok Materi Statistik 2 (Statistik Inferentif). Jakarta: Bumi Aksara
  3. Kurnia, M. T., Nugrahani, E. H., & Sumarno, H. 2014. Analisis Wavelet dan ARIMA untuk Peramalan Harga Emas PT. ANTAM Tbk. Indonesia. Jurnal Matematika, 13, 11-22
  4. Lestari, V. N., & Subanar. 2015. Transformasi Wavelet Diskrit untuk Data Time Series. Seminar Nasional Matematika dan Pendidikan Matematika UNY 2015, (hal. 163-170). Yogyakarta
  5. Makridakis, S., Wheelwright, S. C., & McGee, V. E. 1995. Metode dan Aplikasi Peramalan (Edisi kedua ed.). (U. S. Andriyanto, & A. Basith, Penerj.) Jakarta: Erlangga
  6. Percival, D. B., & Walden, A. T. 2002. Wavelet Methods for Time Series Analysis. Cambridge, United Kingdom: Cambridge University Press
  7. Pusat Informasi Harga Pangan Strategis (PIHPS) Nasional. 2018. Tabel Harga Berdasarkan Daerah. Retrieved from https://hargapangan.id
  8. Ranutinoyo, S. 2015. Produksi dan Konsumsi Cabai : Kebutuhan dan Peluangnya. Kompasiana
  9. Renaud, O., Starck, J. L., & Murtagh, F. 2002. Wavelet-based Forecasting of Short and Long Memory Time Series. Jenewa
  10. Rosadi, D. 2012. Ekonometrika & Analisis Runtun Waktu Terapan dengan E-views. Yogyakarta: CV. Andi Offset
  11. Setiawan, R. 2018, Agustus 21. detikFinance. Dipetik Juli 2019, dari https://m.detik.com/finance/berita-ekonomi-bisnis/d-4175863/genjot-produksi-cabai-di-jateng-kementan-beri-bantuan-rp-684-m
  12. Soejoeti, Z. 1987. Analisis Runtun Waktu. Jakarta: Karunika
  13. Warsito, B., Subanar, & Abdurakhman. 2013. Pemodelan Time Series dengan Maximal Overlap Discrete Wavelet Transform. Prosiding Seminar Nasional Statistika (hal. 605-613). Semarang: Universitas Diponegoro
  14. Wei, W. W. 2006. Time Series Analysis : Univariate and Multivariate Methods Second Edition. Boston: Addison Wesley Publishing Company
  15. Yanuarti, A. R., & Afsari, M. D. 2016. Profil Komoditas Cabai. Jakarta

Last update:

No citation recorded.

Last update:

No citation recorded.