skip to main content

Inovasi Paving Block Bentuk Ikan Pari

*Muhammad Rheza Fakhri Syakir  -  Departemen Sipil dan Perencanaan, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Raihan Dany Anantyo  -  Departemen Sipil dan Perencanaan, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Shifa Fauziyah  -  Departemen Sipil dan Perencanaan, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Riza Susanti  -  Departemen Sipil dan Perencanaan, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

The weak interlock system in paving blocks can cause discomfort for drivers when passing over them. The more frequently traversed by vehicles, paving blocks with poor interlock systems will experience displacement. The compressive strength of paving blocks also affects their quality, thus supporting the performance of the paving block interlock system. This research aims to produce paving block products with a better interlocking system. The method used in this research is experimental and conducted in a laboratory setting. The results of the compressive strength test on stingray-shaped paving blocks, conducted at 14 days and converted to 28 days, showed superior compressive strength with an average of 24.04 MPa compared to conventional square and hexagonal paving blocks tested at 28 days, each with an average compressive strength of 20.07 MPa and 22.25 MPa, respectively. The water absorption test of the stingray-shaped paving blocks conducted at 7 and 14 days showed average water absorption rates of 5.67% and 4.31%, respectively, meeting the quality requirements of Grade B according to SNI -03-0691-1996, which requires less than 6%. Interlock system testing of the stingray-shaped paving blocks indicated superiority with an average displacement of 5.514 mm compared to conventional square and hexagonal paving blocks, each with an average displacement of 11.802 mm and 9.744 mm, respectively. The cost calculation for stingray-shaped paving blocks amounted to Rp. 2263.22 per paving block, 24,559% more economical than the total cost for conventional hexagonal paving blocks, which amounted to Rp. 3000.00.

Fulltext View|Download

Article Metrics:

  1. Atoyebi, O. D., Ikubanni, P. P., Adesina, A., Araoye, O. V., & Davies, I. E. E. (2020). Effect of curing methods on the strength of interlocking paving blocks. Cogent Engineering, 7(1). https://doi.org/10.1080/23311916.2020.1770914
  2. Badan Standardisasi Nasional Indonesia. (1993). SNI-03-2834-1993
  3. Badan Standardisasi Nasional Indonesia. (1990). SNI-03-1750-1990
  4. Badan Standardisasi Nasional Indonesia. (1990). SK-SNI-S-04-1989-F
  5. Badan Standardisasi Nasional Indonesia. (1996). SNI 03-0691-1996
  6. Badan Standardisasi Nasional Indonesia. (2004). SNI 15-2049-2004
  7. Euniza Jusli, Hasanan Md Nor, Ramdhansyah Putra Jaya, & Zaiton Haron. (2015). View of Strength and Microstructure Properties of Double Layered Concrete Paving Blocks Containing Waste Tyre Rubber Granules (1). Jurnal Teknologi
  8. Garg, V., & Kumar, V. (2023). Impact of curing regime on modified interlocking paver blocks. IOP Conference Series: Earth and Environmental Science, 1110(1). https://doi.org/10.1088/1755-1315/1110/1/012036
  9. Hengl, H. L., Kluger-Eigl, W., Lukacevic, M., Blab, R., & Füssl, J. (2018). Horizontal deformation resistance of paving block superstructures – influence of paving block type, laying pattern, and joint behaviour. International Journal of Pavement Research and Technology, 11(8), 846–860. https://doi.org/10.1016/j.ijprt.2018.08.001
  10. Imran, M., Shamin, N., & As’Adiyah, R. B. (2020). The utilization of paving blocks as environmental heat reduction materials. ARTEKS : Jurnal Teknik Arsitektur, 5(3), 421–430. https://doi.org/10.30822/arteks.v5i3.564
  11. Lumingkewas, R. H., Hadiwardoyo, S. P., & Hadiwardoyo, F. A. (2023). Laboratory Innovation to Investigate Concrete Paving Blocks Compressive Strength. Civil Engineering Journal (Iran), 9(11), 2672–2688. https://doi.org/10.28991/CEJ-2023-09-11-03
  12. Mudiyono, R., Tsani, N. S., Putra, A. P., & Adha, K. M. (2019). Analisis Pengaruh Bentuk Paving Block Terhadap Kelendutan Perkerasan Jalan. Reviews in Civil Engineering, 03(1), 12–17
  13. Pranoto, Y., Hashim, N. F., & Tumingan. (2023). A Brief Review of the Environmental Benefits and Maintenance of Porous Concrete Paving Block. Dalam Chemical Engineering Transactions (Vol. 106, hlm. 1219–1224). Italian Association of Chemical Engineering - AIDIC. https://doi.org/10.3303/CET23106204
  14. Prasad, B., Rajendra Prasad, C., Uma, & R., & Yadav, M. (2018). [I-CONCEPTS-18] GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES STUDY ON INTERLOCKING CONCRETE BLOCK PAVEMENT
  15. Putra, A., & Kurniawandy, A. (2017). PENGARUH VARIASI BENTUK PAVING BLOCK TERHADAP KUAT TEKAN
  16. Rachmat, M., & Salsabilla, T. N. (2019). Analysis of hexagonal paving block as a better paving shape. IOP Conference Series: Materials Science and Engineering, 527(1). https://doi.org/10.1088/1757-899X/527/1/012068
  17. Satriyo, D. H. H. (2021). Analisis Kontur Paving Block yang Memberi Dampak Bagi Pengendara di Jalan Universitas Sebelas Maret
  18. Vila, P., Pereyra, M. N., & Gutiérrez, Á. (2017). Resistencia a la compresión de adoquines de hormigón. Resultados tendientes a validar el ensayo en medio adoquín. Revista ALCONPAT, 7(3), 247–261. https://doi.org/10.21041/ra.v7i3.186
  19. Wang, X., Chin, C. S., & Xia, J. (2019). Material characterization for sustainable concrete paving blocks. Applied Sciences (Switzerland), 9(6). https://doi.org/10.3390/app9061197
  20. Yulia Wahyu Saputri, Ezra Hartarto Pongtuluran, S. T. , M. Eng., & Karmila Achmad, S. T. M. T. (2020). PENGARUH PEMANFAATAN SERBUK KARET BAN TERHADAP KUAT TEKAN PAVING BLOCK

Last update:

No citation recorded.

Last update:

No citation recorded.