skip to main content

Analisis Space Layout Strategy Terminal Peti Kemas Dalam Percepatan Proses Dwelling Time Bongkar Muat Pada IPC TPK Area Tanjung Priok 2

Richard Kurniawan  -  Department of Naval Architecture, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
*Wilma Amiruddin  -  Department of Naval Architecture, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Andi Trimulyono  -  Department of Naval Architecture, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Transportasi laut memiliki peran vital dalam mendukung arus perdagangan internasional, terutama melalui aktivitas bongkar muat peti kemas di pelabuhan. PT. IPC Terminal Petikemas sebagai operator utama di Pelabuhan Tanjung Priok menghadapi tantangan meningkatnya dwelling time akibat lonjakan volume peti kemas. Penelitian ini bertujuan untuk menganalisis strategi penataan ruang (space layout strategy) guna mempercepat proses dwelling time bongkar muat, dengan mempertimbangkan aspek teknis, ekonomi, dan operasional. Metodologi yang digunakan mencakup analisis data primer dan sekunder, peramalan throughput serta arus kapal periode 2025–2029 menggunakan metode Average Growth Rate (AGR) dan regresi linear, serta simulasi operasional bongkar muat menggunakan perangkat lunak FlexSim. Simulasi dilakukan terhadap lima skenario jumlah lapisan penumpukan kontainer (3 hingga 7 lapis) dengan RTG crane menggunakan algoritma greedy untuk mengevaluasi konfigurasi optimal. Hasil menunjukkan bahwa peningkatan stacking layer dari 3 menjadi 7 lapis dapat menaikkan kapasitas penyimpanan hingga 132,9%, tetapi menyebabkan peningkatan waktu pemuatan (TCRANE) dari 201,68 menjadi 334 menit, dan konsumsi energi RTG dari 67,73 kWh menjadi 107,1 kWh. Selain itu, reshuffling (TSCO) meningkat secara signifikan, sehingga total dwelling time mencapai 568,5 menit pada skenario 7 lapis. Evaluasi menunjukkan bahwa konfigurasi 5–6 lapis merupakan solusi paling optimal karena mampu menyeimbangkan efisiensi ruang, waktu bongkar muat, dan konsumsi energi. Hasil forecasting juga menunjukkan tren peningkatan arus kapal domestik dan ocean going, sehingga peningkatan kapasitas layanan terminal menjadi kebutuhan mendesak. Strategi penataan ruang dengan peningkatan vertikal terbukti efektif tanpa memerlukan perluasan lahan, serta memberikan kontribusi praktis dan teoritis dalam pengelolaan terminal peti kemas berbasis data dan simulasi.

Fulltext View|Download
Keywords: Throughput; Forecasting; Waktu Pelayanan; Simulation Flexsim; Utilitas; Dwelling Time
  1. A. M. O. Study, “Business : Assessing the Factors Impacting Shipping Container Dwell Time :,” Dep. Ind. Eng. Inf. Syst. Fac. Manag. Econ. Tomas Bata Univ. Zlin, Czech Repub., vol. 25, 2024
  2. and T. L. Y. Ding, “Simulation research on U - automated container terminal,” J. Syst. Simul., pp. 1–8, 2021
  3. Y. Fan, Y.; Liang, C.; Hu, X.; Li, “Planning connections between underground logistics system and container ports,” Comput. Ind. Eng., vol. 139, 2020
  4. X. Jiang, E. P. Chew, L. H. Lee, and K. C. Tan, “Flexible space-sharing strategy for storage yard management in a transshipment hub port,” OR Spectr., vol. 35, no. 2, pp. 417–439, 2020, doi: 10.1007/s00291-012-0308-1
  5. A. unawardhana, J.A.; Perera, H.N.; Thibbotuwawa, “Rule-based dynamiccontainer stacking to optimize yard operations at port terminals,” Marit. Transp. Res., vol. 2, 2021
  6. C. Tan, Y. Liu, J. He, Y. Wang, and H. Yu, “Yard space allocation for container transshipment ports with mother and feeder vessels,” Ocean Coast. Manag., vol. 251, no. January, p. 107048, 2024, doi: 10.1016/j.ocecoaman.2024.107048
  7. E. Stojakovi´c, M.; Twrdy, “Efficiency Evaluation of a Small Container Terminal with Perpendicular Yard Layout Using Shuttle Carriers,” . J. Mar. Sci. Eng., vol. 11, 2023
  8. R. De Armas Jacomino, L., Medina-Pérez, M. A., Monroy, R., Valdes- Ramirez, D., Morell-Pérez, C., & Bello, “Dwell time estimation of import containers as an ordinal regression prob- lem.,” Appl. Sci., vol. 11(20), 2021, doi: https://doi.org/10.3390/app11209380
  9. M. Rodriguez-Molins, M. A. Salido, and F. Barber, “Intelligent planning for allocating containers in maritime terminals,” Expert Syst. Appl., vol. 39, no. 1, pp. 978–989, 2021, doi: 10.1016/j.eswa.2011.07.098
  10. A. Dadashi, M. A. Dulebenets, M. M. Golias, and A. Sheikholeslami, “A novel continuous berth scheduling model at multiple marine container terminals with tidal considerations,” Marit. Bus. Rev., vol. 2, no. 2, pp. 142–157, 2020, doi: 10.1108/MABR-02-2017-0010
  11. Y. Su and E. Nishimura, “Block Layout Design Problem for Marine Container Terminals,” IEEE Int. Conf. Ind. Eng. Eng. Manag., vol. 2022-Decem, pp. 796–800, 2022, doi: 10.1109/IEEM55944.2022.9989678
  12. P. Legato and R. M. Mazza, “A simulation model for designing straddle carrier-based container terminals,” Proc. - Winter Simul. Conf., pp. 3138–3149, 2022, doi: 10.1109/WSC.2017.8248033
  13. K. Zabielska, A., Jacyna, M., Lasota, M., & Nehring, “Evaluation of the efficiency of the delivery process in the technical object of transport infrastructure with the application of a simulation model.,” Eksploat. i Niezawodn., pp. 25(1), 146–155, 2023
  14. R. Burdzik, M. Ciesla, and A. Sładkowski, “Cargo loading and unloading efficiency analysis in multimodal transport,” Promet - Traffic Transp., vol. 26, no. 4, pp. 323–331, 2021, doi: 10.7307/ptt.v26i4.1356
  15. R. Jachimowski and M. Kłodawski, “the Impact of Container Yard Layout on the Cargo Handling Time of External Transport Vehicles in an Intermodal Terminal,” Arch. Transp., vol. 73, no. 1, pp. 179–193, 2025, doi: 10.61089/aot2025.4f22k916
  16. K. R. N. Kim, J.; Hong, E.J.; Yang, Y.; Ryu, “Optimization of Dispatching Policy for the Cranes at the Storage Yard in an Automated Container Terminal.,” App. Sci., vol. 11, 6922, 2021
  17. V.- De Armas Jacomino, L., Medina-Pérez, M. A., Monroy, R. and R. Ramirez, D., Morell-Pérez, C., & Bello, “Dwell time estimation of import containers as an ordinal regression problem.,” Appl. Sci., vol. 11(20), 2021, doi: https://doi.org/10.3390/app11209380
  18. J.-N. Chen, S.-H., & Chen, “Forecasting container throughputs at ports using genetic programming,” Expert Syst. Appl., vol. 37(3), pp. 2054–2058, 2020
  19. M. Sha, T. Notteboom, T. Zhang, X. Zhou, and T. Qin, “Simulation model to determine ratios between quay, yard and intra-terminal transfer equipment in an integrated container handling system,” J. Int. Logist. Trade, vol. 19, no. 1, pp. 1–18, 2021, doi: 10.24006/JILT.2021.19.1.001
  20. J. Yu, G. Tang, D. Li, and B. Mu, “3D Simulation modeling of apron operation in a container terminal,” Proc. - 31st Eur. Conf. Model. Simulation, ECMS 2017, vol. 2, no. Cd, pp. 190–196, 2023, doi: 10.7148/2017-0190
  21. S. Deniz, E., Tuncel, G., Yalçınkaya, Ö, & Esmer, “Simulation of multi-crane single and dual cycling strategies in a container terminal,” J. Simul. Model. Int., vol. 20(3, pp. 465–476, 2021, doi: https://doi.org/10.2507/IJSIMM20-3-559
  22. B. Lu, M. Zhang, X. Xu, C. Liang, Y. Wang, and H. Liu, “Container Yard Layout Design Problem with an Underground Logistics System,” J. Mar. Sci. Eng., vol. 12, no. 7, 2024, doi: 10.3390/jmse12071103
  23. M. Gnap, J., Senko, Š., Drličiak, M., & Kostrzewski, “Modeling of time availability of intermodal terminals.,” Transp. Res. Procedia, pp. 55, 442–449, 2021
  24. T. Kim and K. R. Ryu, “Deriving Situation-Adaptive Policy for Container Stacking in an Automated Container Terminal,” Appl. Sci., vol. 12, no. 8, 2022, doi: 10.3390/app12083892
  25. J. Kłodawski, M., Nehring, K., Jachimowski, R., & Lipińska, “The impact of the intermodal ter-minal operation strategy on container train loading duration.,” Transp. Probl., pp. 19(2), 163–176, 2024
  26. S. Rekik, I., & Elkosantini, “A multi-agent system for the online container stacking in seaport terminals,” J. Comput. Sci., pp. 35, 12–24., 2024
  27. R. Papaioannou, V., Pietrosanti, S., Holderbaum, W., Becerra, V. M., & Mayer, “Analysis of energy usage for RTG cranes.,” Energy, pp. 125, 337–344., 2020
  28. N. Kłodawski, M., Jachimowski, R., & Chamier-Gliszczyński, “Analysis of the overhead crane energy consumption using different container loading strategies in urban logistics hubs,” Energies, pp. 17(5), 985., 2024
  29. A. Gunawardhana, J.A.; Perera, H.N.; Thibbotuwawa, “Rule-based dynamic container stacking to optimize yard operations at port terminals.,” Marit. Transp, p. 2, 2021
  30. Ç. Iris and J. S. L. Lam, “A review of energy efficiency in ports: Operational strategies, technologies and energy management systems,” Renew. Sustain. Energy Rev., vol. 112, no. February, pp. 170–182, 2024, doi: 10.1016/j.rser.2019.04.069
  31. A. Azab and H. Morita, “The block relocation problem with appointment scheduling,” Eur. J. Oper. Res., vol. 297, no. 2, pp. 680–694, 2022, doi: 10.1016/j.ejor.2021.06.007
  32. M. . T. Stojakovi´c, “Efficiency Evaluation of a Small Container Terminal with Perpendicular Yard Layout Using Shuttle Carriers,” J. Mar. Sci. Eng, pp. 11, 449, 2023
  33. P. Galle, Virgile, Barnhart, C., & Jaillet, “Yard crane scheduling for con- tainer storage, retrieval, and relocation.,” Eur. J. Oper. Res., pp. 271 (1), 288–316, 2023
  34. M. Saini and T. Lerher, “Assessing the Factors Impacting Shipping Container Dwell Time: a Multi-Port Optimization Study,” Bus. Theory Pract., vol. 25, no. 1, pp. 51–60, 2024, doi: 10.3846/btp.2024.19205
  35. Y. Zhang, H. Qu, W. Wang, and J. Zhao, “A Novel Fuzzy Time Series Forecasting Model Based on Multiple Linear Regression and Time Series Clustering,”Math. Probl. Eng., vol. 2020, 2020, doi: 10.1155/2020/9546792

Last update:

No citation recorded.

Last update:

No citation recorded.