skip to main content

Pengaruh Post Weld Heat Treatment Terhadap Kekuatan Tarik dan Impak Pada Pengelasan Dissimilar Baja ASTM A36 dan S50C

*Muhammad Farrel Apriliansyah  -  Departemen Teknik Perkapalan Fakultas Teknik, Universitas Diponegoro, Indonesia
Hartono Yudo  -  Departemen Teknik Perkapalan Fakultas Teknik, Universitas Diponegoro, Indonesia
Ahmad Fauzan Zakki  -  Departemen Teknik Perkapalan Fakultas Teknik, Universitas Diponegoro, Indonesia

Citation Format:
Abstract
Penelitian ini menyelidiki hasil pengelasan dissimilar pada baja ASTM A36 dan S50C, dimana diperlukan perhatian tersendiri untuk menghasilkan kualitas sambungan las yang kuat. Salah satu caranya dengan menggunakan Post Weld Heat Treatment, yang diakui dapat mengurangi tegangan sisa, dan meningkatkan sifat mekanik sambungan las. Tujuan penelitian ini adalah untuk mencari pengaruh suhu dan durasi Post Weld Heat Treatment pada pengelasan dissimilar baja ASTM A36 dan S50C, yang dilihat dari nilai kekuatan tarik dan ketangguhan impak. Metode penelitian meliputi persiapan spesimen baja ASTM A36 dan S50C, perlakuan panas pada suhu 500°C dan 600°C dengan durasi 30 menit dan 60 menit, serta pengujian mekanis sesuai dengan standar ASTM, termasuk ASTM A8 untuk uji tarik dan ASTM E23 uji impak. Hasil penelitian menunjukkan bahwa suhu 500°C dengan durasi 60 menit memberikan peningkatan kekuatan tarik dan ketangguhan impak, sedangkan suhu 600°C menunjukkan penurunan kekuatan tarik dan ketangguhan impak, namun meningkatkan kekuakan material. Dapat disimpulkan bahwa suhu dan durasi perlakuan panas yang lebih rendah memberikan hasil yang lebih optimal, dikarenakan pada suhu lebih tinggi menyebabkan perubahan mikrostruktur yang lebih signifikan yang dapat mengurangi kekuatan tarik dan ketangguhan impak. Sehingga pemilihan suhu dan durasi perlakuan panas yang sesuai memiliki peran yang penting dalam memperoleh hasil terbaik.
Fulltext View|Download
Keywords: PWHT; Pengelasan Dissimilar; SMAW; ASTM 36; S50C
  1. Serope Kalpakjian and Steven Schmid, Manufacturing Engineering and Technology, vol. Sixth edit. Prentice Hall, 2009
  2. J. Norrish, “1 – An introduction to welding processes,” 2006, pp. 1–15. doi: 10.1533/9781845691707.1
  3. P. Carlone and A. Astarita, “Dissimilar metal welding,” Nov. 01, 2019, MDPI AG. doi: 10.3390/met9111206
  4. T. Xu, S. Zhou, H. Wu, X. Ma, H. Liu, and M. Li, “Dissimilar joining of low-carbon steel to aluminum alloy with TiC particles added in a zero-gap lap joint configuration by laser welding,” Mater Charact, vol. 182, p. 111574, Dec. 2021, doi: 10.1016/J.MATCHAR.2021.111574
  5. A. Hamada, M. Ali, S. Ghosh, M. Jaskari, M. Keskitalo, and A. Järvenpää, “Mechanical performance and formability of laser-welded dissimilar butt joints between medium-Mn stainless steel and high-strength carbon steel,” Materials Science and Engineering: A, vol. 831, p. 142200, Jan. 2022, doi: 10.1016/J.MSEA.2021.142200
  6. S. T. Suherman and I. Abdullah, TEKNIK PENGELASAN (CARA MENGHINDARI CACAT LAS). [Online]. Available: http://umsupress.umsu.ac.id/
  7. N. Kumar, C. Pandey, and P. kumar, “Dissimilar Welding of Inconel Alloys with Austenitic Stainless-Steel: A Review,” Journal of Pressure Vessel Technology-transactions of The Asme, vol. 145, no. 1, 2022, doi: 10.1115/1.4055329
  8. V. Goel, T. W. Liao, and K. S. Lee, “A shielded metal arc welding expert system,” Comput Ind, vol. 21, no. 2, pp. 121–129, 1993, doi: 10.1016/0166-3615(93)90130-S
  9. R. Datta, D. Mukerjee, S. K. Jha, K. Narasimhan, and R. Veeraraghavan, “Weldability characteristics of shielded metal arc welded high strength quenched and tempered plates,” J Mater Eng Perform, vol. 11, no. 1, pp. 5–10, 2002, doi: 10.1007/S11665-002-0001-7
  10. S. R. Ahmed, L. A. Agarwal, and B. S. S. Daniel, “Effect of Different Post Weld Heat Treatments on the Mechanical properties of Cr-Mo Boiler Steel Welded with SMAW Process,” Mater Today Proc, vol. 2, no. 4–5, pp. 1059–1066, Jan. 2015, doi: 10.1016/J.MATPR.2015.07.002
  11. H. C. Dill and A. E. Wisler, “Heat treatment of welds,” 1974. [Online]. Available: https://patents.google.com/patent/US3997374A/en
  12. K. N. Krishnan, “The effect of post weld heat treatment on the properties of 6061 friction stir welded joints,” J Mater Sci, vol. 37, no. 3, pp. 473–480, 2002, doi: 10.1023/A:1013701104029
  13. V. Ploshikhin, A. Prihodovsky, and A. Ilin, “Experimental investigation of the hot cracking mechanism in welds on the microscopic scale,” Front Mater Sci, vol. 5, no. 2, pp. 135–145, 2011, doi: 10.1007/S11706-011-0135-3
  14. Y. Xu et al., “Dissimilar joining of aluminum alloy and low-alloy carbon steel by resistance spot welding,” Journal of Materials Research and Technology, vol. 33, pp. 919–928, Nov. 2024, doi: 10.1016/J.JMRT.2024.09.133
  15. I. O. Oladele, D. B. Alonge, T. O. Betiku, E. O. Igbafen, and B. O. Adewuyi, “Performance Evaluation of the Effects of Post Weld Heat Treatment onthe Microstructure, Mechanical and Corrosion Potentials of LowCarbon Steel,” vol. 44, no. 1, pp. 41–47, 2019, doi: 10.24867/ATM-2019-1-007
  16. Chetan Singh, Post Weld Heat Treatment PWHT: Standards, Procedures, Applications, and Interview Q&A. Chetan Singh, 2023
  17. V. D. Kalyankar and G. Chudasama, “Effect of post weld heat treatment on mechanical properties of pressure vessel steels,” Mater Today Proc, vol. 5, no. 11, pp. 24675–24684, Jan. 2018, doi: 10.1016/J.MATPR.2018.10.265
  18. kiduck Park, S. Kim, J. Chang, and C. Lee, “Post-weld heat treatment cracking susceptibility of T23 weld metals for fossil fuel applications,” Mater Des, vol. 34, no. 34, pp. 699–706, 2012, doi: 10.1016/J.MATDES.2011.05.029
  19. Jurnal Teknik Perkapalan, Vol. XX, No. X Januari 20XX 11
  20. M. W. Dewan, J. Liang, M. A. Wahab, and A. M. Okeil, “Effect of post-weld heat treatment and electrolytic plasma processing on tungsten inert gas welded AISI 4140 alloy steel,” Mater Des, vol. 54, pp. 6–13, 2014, doi: 10.1016/J.MATDES.2013.08.035
  21. S. Nogami, N. Hara, T. Nagasaka, A. Hasegawa, and T. Muroga, “Effect of PWHT on the mechanical and metallographical properties of a dissimilar-metal weld joint of F82H and SUS316L steels,” Fusion Science and Technology, vol. 60, no. 1, pp. 334–338, 2011, doi: 10.13182/FST11-A12375
  22. Y. Huang et al., “Effect of post weld heat treatment on microstructural and mechanical properties of martensitic heat-resistant steel weldments,” International Journal of Pressure Vessels and Piping, vol. 212, p. 105323, Dec. 2024, doi: 10.1016/J.IJPVP.2024.105323
  23. R. K. Aninda, S. M. Karobi, R. Shariar, M. M. Rahman, and M. I. I. Rabby, “Effect of post-weld heat treatment on mechanical properties and microstructure in electric arc welded mild steel joints,” Journal of Engineering Research, vol. 12, no. 2, pp. 210–215, Jun. 2024, doi: 10.1016/J.JER.2023.10.012
  24. F. Widya, S. Ashari, A. Hafizh, A. Rasyid, M. Arif Irfa’i, and S. Drastiawati, “PENGARUH VARIASI TEMPERATUR POST WELD HEAT TREATMENT FULL ANNEALING PADA MATERIAL SA 516 G 70 TERHADAP KEKUATAN TARIK DAN KETANGGUHAN,” Agustus, vol. 3, no. 1, pp. 1–16, 2024, [Online]. Available: http: https://jurnal.poliwangi.ac.id/index.php/jinggo/
  25. D. Tomerlin, D. Marić, D. Kozak, and I. Samardžić, “Post-Weld Heat Treatment of S690QL1 Steel Welded Joints: Influence on Microstructure, Mechanical Properties and Residual Stress,” Superalloys, vol. 13, no. 5, p. 999, 2023, doi: 10.3390/met13050999
  26. U. Özdemir, S. Keskinkılıç, F. Acar, F. Kabakci, and M. Acarer, “Effect of PWHT Temperature and Time on Hardness and Microstructure of 410NiMo Weld Metal,” 2018, doi: 10.20944/PREPRINTS201811.0182.V1
  27. William D. Callister and David G. Rethwish, “Materials Science and Engineering An Introduction, 8th Edition,” Wiley, p. 992, Dec. 2009
  28. A. I. ZwickRoell, ASTM E8/E8M-24: Standard Test Methods for Tension Testing of Metallic Materials. USA: ASTM International, PA, 2024
  29. A. I. ZwickRoell, ASTM E23-23a: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. USA: ASTM International, PA, 2023
  30. J. Cornu, “Mechanical Testing of Welds,” in Fundamentals of Fusion Welding Technology, J. Cornu and J. Weston, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1988, pp. 35–48. doi: 10.1007/978-3-662-11049-2_5
  31. K. Budinski and M. Budinski, Engineering Materials: Properties and Selection. 2010
  32. George F. Vander Voort, ASM Handbook Volume 9: Metallography and Microstructures, vol. 9. ASM International, 2004
  33. J. E. Bringas, “Handbook of Comparative World Steel Standards ASTM DS67A 2nd Edition.” [Online]. Available: http://www.copyright.com/
  34. E. L. MCCOMBS, Structural Welding Code-Steel. American Welding Society (AWS) D1. 2002
  35. T. Tuswan et al., “Correlation between lamina directions and the mechanical characteristics of laminated bamboo composite for ship structure,” Curved and Layered Structures, vol. 10, no. 1, Jan. 2023, doi: 10.1515/cls-2022-0186
  36. P. Ghavami, “Stress and Strain,” Springer, Cham, 2015, pp. 143–162. doi: 10.1007/978-3-319-07572-3_6
  37. M. Ashby and D. Jones, “The Elastic Moduli,” 2012, pp. 29–53. doi: 10.1016/B978-0-08-096665-6.00003-9
  38. F. Wittmann, H. Mihashi, and N. Nomura, “Size effect on fracture energy of concrete,” Eng Fract Mech, vol. 35, pp. 107–115, Aug. 1990, doi: 10.1016/0013-7944(90)90188-M
  39. M. Wahyu and A. Irwan, “ANALISA UJI IMPAK BAJA CARBON STEEL 1045 DENGAN MENGGUNAKAN METODE CHARPY.” [Online]. Available: http://jurnal.harapan.ac.id/index.php/JSR
  40. F. Abdillah Windratama and dan Sidiq Ruswanto, “Analisis Pengaruh Parameter Suhu Annealing Terhadap Sifat Mekanik Hasil Pengelasan SMAW Dissimilar Metal,” Prosiding Seminar Nasional Teknik Mesin Politeknik Negeri Jakarta, pp. 743–750, 2019, [Online]. Available: http://semnas.mesin.pnj.ac.id
  41. Abd. Wahab, L. H. Arma, H. Arsyad, and R. Bin Othman, “Effect of Temperature Variation PWHT Dissimilar Welding Low Carbon Steel ASTM A36 with ASTM A240 Type 316L,” EPI International Journal of Engineering, vol. 7, no. 1, pp. 33–37, Feb. 2024, doi: 10.25042/epi-ije.022024.05

Last update:

No citation recorded.

Last update:

No citation recorded.