skip to main content

Analisis Pengaruh Penambahan Spray Strips pada Stepped Planing Hull terhadap Hambatan Total menggunakan Metode Computational Fluid Dynamics

*Febriyansyah Eko Ardhi Nugroho  -  Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Indonesia
Untung Budiarto  -  Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Indonesia
Ari Wibawa Budi Santosa  -  Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Indonesia

Citation Format:
Abstract

Kapal tipe planing hull menghasilkan tekanan hidrodinamika yang besar ketika sedang melaju dalam kecepatan tinggi. Meningkatkan kecepatan kapal menjadi salah satu aspek penting dari desain planing hull. Pada penelitian ini menggunakan spray strips untuk mengurangi hambatan yang dihasilkan kapal planing hull. Spray strips ini berfungsi untuk mengurangi Wetted Surface Area (WSA), terutama pada area semprotan. Cara kerjanya dengan membelokkan arah aliran semprotan yang terdapat di depan garis stagnasi. Penelitian ini menggunakan model double stepped hull dan variasi besar bottom angle (δ) pada spray strips, serta kecepatan kapal. Metode yang digunakan dalam penelitian ini yaitu Finite Volume Method (FVM) dengan persamaan Reynolds-Averaged Navier-Stokes (RANS). Model turbulensi yang digunakan k-ω SST dan untuk merepresentasikan fase air dan udara menggunakan Volume of Fluid (VOF). Hasil dari penelitian ini menunjukkan penambahan spray strips secara keseluruhan dapat mengurangi hambatan total di semua kecepatan. Semakin besar bottom angle (δ) maka semakin kecil hambatan total yang dihasilkan. Dengan pengurangan terbesar 14.96% pada variasi besar sudut 60° (SS 5) di Fn 1.41. Sedangkan, penurunan hambatan total terkecil sebesar 2.8% di Fn 2.07 pada variasi besar sudut 15° (SS 2). Berdasarkan rata-rata pengurangan hambatan total di semua kecepatan, variasi SS 5 menunjukkan hasil terbaik.

Fulltext View|Download
Keywords: planing hull; hambatan; spray strips; CFD
  1. G. Hou, B. Johnson, J. Degroff, S. Trenor, and J. Michaeli, “Dynamic response modeling of high-speed planing craft with enforced acceleration,” Ocean Engineering, vol. 192, doi: 10.1016/j.oceaneng.2019.106493
  2. Wheeler, K. I. Matveev, and T. Xing, “Numerical study of hydrodynamics of heavily loaded hard-chine hulls in calm water,” J Mar Sci Eng, vol. 9, no. 2, pp. 1–18, doi: 10.3390/jmse9020184
  3. D. Savitsky, “On the subject of high-speed monohulls,” Greek Section of the Society of Naval Architects and Marine Engineers (SNAME), pp. 1–44, 2003
  4. D. Savistky and M. Morabito, “Surface wave contours associated with the forebody wake of stepped planing hulls,” Marine Technology and SNAME news, vol. 47, no. 01, pp. 1–16, 2010
  5. R. N. Bilandi, A. Dashtimanesh, and S. Tavakoli, “Hydrodynamic study of heeled double-stepped planing hulls using CFD and 2D+ T method,” Ocean Engineering, vol. 196, p. 106813, 2020
  6. W. R. Garland, “Stepped planing hull investigation,” United States Naval Academy, 2010
  7. A. F. Molland, S. R. Turnock, and D. A. Hudson, Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive Power. Cambridge University Press, 2011
  8. E. P. Clement, Effects of longitudinal bottom spray strips on planing boat resistance. Navy Department, David Taylor Model Basin, 1964
  9. Samuel, A. Trimulyono, P. Manik, and D. Chrismianto, “A numerical study of spray strips analysis on fridsma hull form,” Fluids, vol. 6, no. 11, p. 420, 2021
  10. J. Seo, Choi. H, Jeong. U, Lee. D, Rhee. S, Jung. C, Yoo. J, “Model tests on resistance and seakeeping performance of wave-piercing high-speed vessel with spray rails,” International Journal of Naval Architecture and Ocean Engineering, vol. 8, no. 5, pp. 442–455, 2016
  11. B. Molchanov, S. Lundmark, M. Fürth, and M. Green, “Experimental validation of spray deflectors for high speed craft,” Ocean Engineering, vol. 191, doi: 10.1016/j.oceaneng.2019.106482
  12. C. Wielgosz, A. Rosén, R. Datla, U. Chung, and J. Danielsson, “Experimental modelling of spray deflection influence on planing craft performance in calm water and waves,” Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, vol. 234, no. 2, pp. 399–408, doi: 10.1177/1475090219887326
  13. A. H. Muhammad, “Kajian Hidrodinamika Pengaruh Peletakan Spray-Strake Pada Kapal Patroli Cepat Tipe Planning Hull.” Jurusan Teknik Perkapalan, Fakultas Teknik, Universitas Hasanuddin. Makassar, 2009
  14. L. Castaldi, F. Osmak, M. Green, M. Fürth, and J. Bonoli, “The effect of spray deflection on the performance of high speed craft in calm water,” Ocean Engineering, vol. 229, doi: 10.1016/j.oceaneng.2021.108892
  15. D. J. Taunton, D. A. Hudson, and R. A. Shenoi, “Characteristics of a series of high speed hard chine planing hulls-part 1: performance in calm water,” International Journal of Small Craft Technology, vol. 152, pp. 55–75, 2010
  16. D. Savitsky, M. F. DeLorme, and R. Datla, “Inclusion of whisker spray drag in performance prediction method for high-speed planing hulls,” Marine Technology and SNAME News, vol. 44, no. 01, pp. 35–56, 2007
  17. Muller-Graf, “The effect of an advanced spray rail system on resistance and development of spray of semi-displacement round bilge hulls,” 1991
  18. S. Mancini, “The problem of verification and validation processes of CFD simulations of planing hulls,” Department of Industrial Engineering. Università Degli Studi Di Napoli, 2015
  19. ITTC, “Practical guide;ines for ship CFD applications,” ITTC – Recomm. Proced. Guidel. ITTC. pp. 1-8, 2011
  20. M. Bakhtiari, S. Veysi, and H. Ghassemi, “Numerical modeling of the stepped planing hull in calm water,” International Journal of Engineering, vol. 29, no. 2, pp. 236–245, 2016

Last update:

No citation recorded.

Last update:

No citation recorded.