skip to main content

ANALISIS KEANDALAN INTEGRATED ELECTRIC PNEUMATIC PUMP PADA BUS LISTRIK MENENGAH MENGGUNAKAN RELIABILITY BLOCK DIAGRAM DAN FAULT TREE ANALYSIS

*Ghossan Putra Setiawan  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Ismoyo Haryanto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Gunawan Dwi Haryadi  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Penelitian ini mengkaji keandalan Integrated Electric Pneumatic Pump (IEPP) yang merupakan komponen utama dalam sistem bus listrik menengah. Analisis dilakukan menggunakan metode Reliability Block Diagram (RBD) dan Fault Tree Analysis (FTA) untuk mengevaluasi performa dan mengidentifikasi potensi kegagalan sistem. Data keandalan setiap komponen dikumpulkan dan dimodelkan dalam diagram RBD, serta dianalisis dengan FTA untuk menelusuri penyebab kegagalan sistem. Hasil menunjukan tingkat keandalan IEPP dapat ditingkatkan melalui identifikasi komponen kritis yang menjadi titik lemah. Studi ini diharapkan dapat membantu dalam perawatan dan pengembangan sistem bus listrik yang lebih handal dan aman.

Fulltext View|Download
Keywords: bus listrik; fault tree analysis; integrated electric pneumatic pump; keandalan
  1. Belmonte, B. B., Avemarie, G., & Rinderknecht, S. (2024). Optimized Smart Charging of Electric Bus Fleets for Greenhouse Gas Emission 76 Minimization. Proceedings - 24th EEEIC International Conference on Environment and Electrical Engineering and 8th I and CPS Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2024, 1–6
  2. https://doi.org/10.1109/eeeic/icpseurope61470.2024.10751621
  3. Li, Q., Leng, Y., Yao, H., & Pei, M. (2024). Assessment of transit bus electricity consumption using a random parameters approach. Energy, 307, 132811
  4. https://doi.org/10.1016/j.energy.2024.132811
  5. Lawton, M. P., & Brody, E. M. (1969). Assessment of Older people: Self Maintaining and Instrumental Activities of Daily living. The Gerontologist, 9(3 Part 1), 179–186. https://doi.org/10.1093/geront/9.3_part_1.179
  6. Topal, O. (2024). A new perspective on the performance comparison of pure electric buses versus converted electric buses in public transportation systems. International Journal of Low-Carbon Technologies, 19, 1829–1840
  7. https://doi.org/10.1093/ijlct/ctae049
  8. Li, Shuwei, Zheng, & Yaogang. (2013). Development of integrated braking and steering system for electric bus. 仪器仪表学报, 138–141
  9. http://www.cqvip.com/QK/94550X/2013S1/1005526660.html
  10. Engel, D. W., Dalton, A. C., Dale, C., Jones, E., & Thompson, J. (2013). Risk Analysis and Decision Making FY 2013 Milestone Report
  11. https://doi.org/10.2172/1088638
  12. László, P. (2011). Sensitivity Investigation of Fault Tree Analysis with Matrix Algebraic Method. Deleted Journal,
  13. https://www.eng.unideb.hu/userdir/pokoradi/11_02.pdf
  14. Lapp, S. A. (2005). Applications of fault tree analysis to maintenance interval extension and vulnerability assessment. Process Safety Progress, 24(2), 91 97
  15. https://doi.org/10.1002/prs.10071
  16. Ahmad, W., Hasan, O., Pervez, U., & Qadir, J. (2016). Reliability modeling and analysis of communication networks. Journal of Network and Computer Applications, 78, 191–215. https://doi.org/10.1016/j.jnca.2016.11.008
  17. Yllera, J. (2018). Modularization methods for evaluating fault trees of complex technical systems. In CRC Press eBooks (pp. 81–100)
  18. https://doi.org/10.1201/9781351071710-5

Last update:

No citation recorded.

Last update:

No citation recorded.