skip to main content

ANALISIS VON MISES STRESS PADA TULANG L4 HINGGA L5 DENGAN MENGGUNAKAN METODE ELEMEN HINGGA

*Denys Bungaran  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Jamari Jamari  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Tri Indah Winarni  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Penelitian ini bertujuan untuk menganalisis distribusi tegangan von Mises pada segmen tulang belakang lumbar L4–L5 akibat variasi pembebanan multiaxial menggunakan metode elemen hingga. Model 3D tulang lumbar dikonstruksi dari data CT-scan pasien lansia dan diproses melalui perangkat lunak Mimics, Geomagic Studio, dan SolidWorks. Simulasi dilakukan dengan pemberian gaya aksial sebesar 500 N dan momen 10 N.m, disertai variasi gerakan fleksi, ekstensi, lateral bending, serta rotasi aksial. Hasil simulasi menunjukkan bahwa endplate merupakan bagian yang paling banyak menerima tegangan, terutama saat gerakan fleksi dan lateral bending kanan. Annulus fibrosus juga mengalami tegangan cukup tinggi, sedangkan nucleus pulposus menunjukkan nilai tegangan paling rendah di semua kondisi. Hal ini menunjukkan bahwa aktivitas seperti membungkuk dan memiringkan tubuh secara berulang dapat meningkatkan risiko cedera biomekanik seperti Hernia Nucleus Pulposus (HNP), khususnya pada populasi lansia. Temuan ini memberikan dasar biomekanik penting untuk mendukung diagnosis dan strategi rehabilitasi tulang belakang.

Fulltext View|Download
Keywords: analisis elemen hingga; anulus; l4-l5; ligamen; nukleus; plat ujung; stres von mises, tulang belakang lumbal
  1. Park, W.M., Kim, K. and Kim, Y.H. (2013) ‘Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine.’, Computers in biology and medicine, 43(9), pp. 1234–1240. Available at: https://doi.org/10.1016/j.compbiomed.2013.06.011
  2. Galbusera, F., & Bassani, T. (2019). Lumbar spine biomechanics: A review of in vitro and computational studies. Journal of Biomechanics, 94, 73–83. https://doi.org/10.1016/j.jbiomech.2019.07.004
  3. Lomeli-Rivas, N., & Larrinúa-Betancourt, R. (2019). Biomechanical analysis of the lumbar spine: A tool for clinical interpretation and decision-making. Journal of Medical Biomechanics, 34(2), 115–123. https://doi.org/10.1016/j.medbio.2019.02.005
  4. Jamari, J. et al. (2021) ‘The Effect of Bottom Profile Dimples on the Femoral Head on Wear in Metal-on-Metal Total Hip Arthroplasty.’, Journal of functional biomaterials, 12(2). Available at: https://doi.org/10.3390/jfb12020038
  5. Yeh, M.K. et al. (2014) ‘Bending stress analysis of laminated foldable touch panel’, Procedia Engineering, 79(1st ICM), pp. 189–193. Available at: https://doi.org/10.1016/j.proeng.2014.06.330
  6. Udofia, I. et al. (2007) ‘The initial stability and contact mechanics of a press-fit resurfacing arthroplasty of the hip.’, The Journal of bone and joint surgery. British volume, 89(4), pp. 549–556. Available at: https://doi.org/10.1302/0301-620X.89B4.18055
  7. Wáng, Y.X.J. et al. (2018) ‘Osteoporotic vertebral endplate and cortex fractures: A pictorial review’, Journal of Orthopaedic Translation. Elsevier (Singapore) Pte Ltd, pp. 35–49. Available at: https://doi.org/10.1016/j.jot.2018.08.004
  8. Tsujimoto, R., Yamada, H., Nakazawa, T., Sugiura, T., & Ito, H. (2016). Degenerative disc disease and osteophyte formation in lumbar spondylosis: A radiological and pathological correlation. Spine Journal, 16(5), 679–687. https://doi.org/10.1016/j.spinee.2016.01.012
  9. Yamamoto, I. et al. (1989) ‘Three-dimensional movements of the whole lumbar spine and lumbosacral joint.’, Spine, 14(11), pp. 1256–1260. Available at: https://doi.org/10.1097/00007632-198911000-00020
  10. Dreischarf, M. et al. (2014) ‘Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together’, Journal of Biomechanics, 47(8), pp. 1757–1766. Available at: https://doi.org/10.1016/j.jbiomech.2014.04.002
  11. Cho, A.R. et al. (2015) ‘Effect of augmentation material stiffness on adjacent vertebrae after osteoporotic vertebroplasty using finite element analysis with different loading methods’, Pain Physician, 18(6), pp. E1101–E1110. Available at: https://doi.org/10.36076/ppj.2015/18/e1101
  12. Shi, Z. et al. (2021) ‘The biomechanical effect on the adjacent L4/L5 segment of S1 superior facet arthroplasty: a finite element analysis for the male spine’, Journal of Orthopaedic Surgery and Research, 16(1), pp. 1–9. doi: 10.1186/s13018-021-02540-0

Last update:

No citation recorded.

Last update:

No citation recorded.