skip to main content

SIMULASI NUMERIK PENGARUH U-GROOVE TERHADAP PERFORMA TURBIN GORLOV UNTUK PEMBANGKIT LISTRIK ARUS LAUT

*Rizlan Riyadi  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Syaiful Syaiful  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Joga Dharma Setiawan  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract
Energi terbarukan dengan memanfaatkan arus laut untuk membangkitkan energi listrik telah menjadi perhatian banyak peneliti. Turbin Gorlov dapat dimanfaatkan untuk mengubah energi kinetic arus laut menjadi menjadi energi listrik. Beberapa parameter turbin Gorlov , seperti sumbu bilah bertikal, sumbu bilah heliks, dan sumbu bilah horizontal menjadi parameter yang perlu diperhatikan. Oleh karena itu, studi ini bertujuan untuk memodelkan kinerja Turbin Gorlov dengan membuat groove pada permukaan sudu turbin. Groove dengan bentuk U dengan kedalaman 0,5 cm diberikan pada permukaan sudu turbin. Bilah turbin dirancang dengan bentuk airfoil NACA 4412. Hasil penelitian menunjukan, adanya peningkatan nilai coefficient power dengan menggunakan variasi groove dibandingkan dengan bilah turbin normal. Hal ini disebabkan oleh perbedaan luas permukaan yang terkena  aliran fluida pada permukan bilah turbin. Coefficient power dengan groove mencapai nilai tertinggi sebesar 0.88. Sedangkan pada bilah turbin normal, coefficient power tertinggi adalah sebear di 0.84.
Fulltext View|Download
Keywords: energi terbarukan; groove; koefisien power; turbin gorlov
  1. F. T. Hasanah, “Karakteristik wilayah daratan dan perairan Indonesia,” J. Geogr., vol. 20, no. 13, pp. 1–6, 2020
  2. I. Kurniawan, “Kajian Eksperimental dan Numerikal Turbin Air Helikal Gorlov Untuk Twist Angle 60,” J. Teknobiologi, no. 1, pp. 7–13, 2014
  3. S. Kiho, M. Shiono, and K. Suzuki, “The power generation from tidal currents by Darrieus turbine,” Renew. Energy, vol. 9, no. 1-4 SPEC. ISS., pp. 1242–1245, 1996, doi: 10.1016/0960-1481(96)88501-6
  4. J. Winchester and S. Quayle, “Torque ripple and variable blade force: A comparison of Darrieus and Gorlov-type turbines for tidal stream energy conversion,” Proc. 8th Eur. Wave Tiadal Energy Conf., no. April, pp. 668–676, 2009, [Online]. Available: http://eprints.lancs.ac.uk/53690/
  5. K. B. Reddy, A. C. Bhosale, and R. P. Saini, “Performance parameters of lift-based vertical axis hydrokinetic turbines - A review,” Ocean Eng., vol. 266, no. P4, p. 113089, 2022, doi: 10.1016/j.oceaneng.2022.113089
  6. G. R. Mwaniki, M. O. Okok, and E. Oromat, “Expanding access to clean energy in developing countries: The role of off-grid mini hydro power projects in Kenya,” Int. J. Renew. Energy Res., vol. 9, no. 3, pp. 1571–1577, 2019, doi: 10.20508/ijrer.v9i3.9486.g7746
  7. A. Zhang, S. Liu, Y. Ma, C. Hu, and Z. Li, “Field tests on model efficiency of twin vertical axis helical hydrokinetic turbines,” Energy, vol. 247, p. 123376, 2022, doi: 10.1016/j.energy.2022.123376
  8. A. H. Elbatran, O. B. Yaakob, Y. M. Ahmed, and H. M. Shabara, “Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review,” Renew. Sustain. Energy Rev., vol. 43, pp. 40–50, 2015, doi: 10.1016/j.rser.2014.11.045
  9. S. Pongduang, C. Kayankannavee, and Y. Tiaple, Experimental Investigation of Helical Tidal Turbine Characteristics with Different Twists, vol. 79. Elsevier B.V., 2015. doi: 10.1016/j.egypro.2015.11.511
  10. V. Jayaram and B. Bavanish, “Design and analysis of gorlov helical hydro turbine on index of revolution,” Int. J. Hydrogen Energy, vol. 47, no. 77, pp. 32804–32821, Sep. 2022, doi: 10.1016/j.ijhydene.2022.07.181
  11. Z. Wang, Y. Wang, and M. Zhuang, “Improvement of the aerodynamic performance of vertical axis wind turbines with leading-edge serrations and helical blades using CFD and Taguchi method,” Energy Convers. Manag., vol. 177, no. May, pp. 107–121, 2018, doi: 10.1016/j.enconman.2018.09.028
  12. G. Saini and R. P. Saini, “Clearance and blockage effects on hydrodynamic performance of hybrid hydrokinetic turbine,” Sustain. Energy Technol. Assessments, vol. 57, no. April, p. 103210, 2023, doi: 10.1016/j.seta.2023.103210
  13. R. Kumar and S. Sarkar, “Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines,” Renew. Sustain. Energy Rev., vol. 162, no. April, p. 112431, 2022, doi: 10.1016/j.rser.2022.112431
  14. D. Chen, Y. Ma, C. Hu, and T. Zhao, “Efficiency optimization of twin vertical-axis helical hydrokinetic turbines (VAHHTs) based on Taguchi method,” Appl. Ocean Res., vol. 138, no. April, p. 103618, 2023, doi: 10.1016/j.apor.2023.103618
  15. P. K. Yadav, A. Kumar, and S. Jaiswal, “A critical review of technologies for harnessing the power from flowing water using a hydrokinetic turbine to fulfill the energy need,” Energy Reports, vol. 9, pp. 2102–2117, 2023, doi: 10.1016/j.egyr.2023.01.033
  16. V. Patel, V. Rathod, and C. Patel, “Optimal utilization of hydrokinetic energy resources through performance improvement of the darrieus turbine using concave and flat blocking plates,” Ocean Eng., vol. 283, no. April, p. 115099, 2023, doi: 10.1016/j.oceaneng.2023.115099
  17. J. S. Tsai and F. Chen, “The conceptual design of a tidal power plant in Taiwan,” J. Mar. Sci. Eng., vol. 2, no

Last update:

No citation recorded.

Last update:

No citation recorded.