skip to main content

ANALISIS PENGARUH KOEFISIEN DAMPER DAN KONSTANTA PEGAS PADA SUSPENSI TERHADAP RIDE DAN HANDLING DENGAN METODE PENGUJIAN STEP STEER TEST DAN DOUBLE LANE CHANGE TEST

*Vinsensius Farel  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Toni Prahasto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Joga Dharma Setiawan  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Penggunaan kendaraan semakin meningkat karena mampu meningkatkan efektivitas manusia saat berpergian, sehingga aspek kenyamanan dan handling menjadi fokus utama. Kenyamanan mengacu pada kemampuan sistem suspensi yang mampu meredam getaran ketika melewati permukaan jalan yang tidak rata, sementara handling berfungsi untuk mempertahankan kestabilan saat melakukan manuver. Tujuan penelitian ini untuk mengetahui pengaruh konstanta pegas dan koefisien damper  pada kendaraan dengan penggerak front-wheel drive (FWD) dan all-wheel drive (AWD) terhadap ride dan handling saat melakukan double lane change test dan step steer test . Mendapatkan hasil analisis variasi koefisien damper suspensi kendaraan FWD dan AWD terhadap ride dan handling kendaraan. Analisis ini menggunakan software Altair MotionView 2022 dengan metode multi-body dynamics. Parameter data yang digunakan meliputi berat kendaraan, jenis suspensi, tinggi pusat gravitasi, spesifikasi roda, koefisien damper, dan konstanta pegas.  Variasi simulasi tiga kondisi: mengurangi, menggunakan referensi model, dan meningkatkan nilai koefisien damper serta konstanta pegas. Pengujian dinamika kendaraan dilakukan menggunakan standar ISO step steer test dan double lane change test. Karakteristik kenyamanan dan handling kendaraan dapat ditentukan melalui parameter steering wheel angle, lateral acceleration, yaw rate, roll angle, vehicle sideslip angle. Hasil dari penelitian ini menentukan ride dan handling pada kendaraan FWD nilai konstanta pegas depan dan belakang 26,2 N/mm, 27,51 N/mm dan nilai koefisien damper suspensi depan dan belakang 5,60 dan 5,74. Pada kendaraan AWD nilai konstanta pegas pada suspensi depan dan belakang masing-masing 31,44 N/mm dan 26,2 N/mm dan koefisien damper masing-masing 6,14 dan 5,60 yang mana merupakan nilai konstanta pegas dan koefisien damper yang paling tinggi cenderung lebih stabil dan kendaraan memiliki karakteristik understeer saat melakukan pengujian step steep test dan double lane change bedasarakan parameter pengujian dinamika kendaraan.

Fulltext View|Download
Keywords: coefficient damper; handling; mitsubishi galant; ride; spring constant
  1. T. J. Yuen, R. Rahizar, Z. A. Mohd Azman, A. Anuar, and D. Afandi, “Design optimization of full vehicle suspension based on ride and handling performance,” Lect. Notes Electr. Eng., vol. 195 LNEE, no. VOL. 7, pp. 75–86, 2013, doi: 10.1007/978-3-642-33835-9_8
  2. M. Zehsaz, F. Vakili-TAHAMI, and A. Paykani, “Investigation on the effects of stiffness and damping coefficients of the suspension system of a vehicle on the ride and handling performance,” UPB Sci. Bull. Ser. D Mech. Eng., vol. 76, no. 1, pp. 55–70, 2014
  3. Y. Shen, L. Chen, X. Yang, D. Shi, and J. Yang, “Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension,” J. Sound Vib., vol. 361, pp. 148–158, 2016, doi: 10.1016/j.jsv.2015.06.045
  4. B. Mashadi, N. Ebrahimi, and J. Marzbanrad, “Effect of front-wheel drive or rear-wheel drive on the limit handling behaviour of passenger vehicles,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 221, no. 4, pp. 393–403, 2007, doi: 10.1243/09544070JAUTO380
  5. J. W. Griffin and A. A. Popov, “Multibody dynamics simulation of an all-wheel-drive motorcycle for handling and energy efficiency investigations,” Veh. Syst. Dyn., vol. 56, no. 7, pp. 983–1001, 2018, doi: 10.1080/00423114.2017.1296962
  6. H. F. Grip, L. Imsland, T. A. Johansen, J. C. Kalkkuhl, and A. Suissa, “Vehicle Sideslip Estimation: Design, implementation, and experimental validation,” IEEE Control Syst., vol. 29, no. 5, pp. 36–52, 2009, doi: 10.1109/MCS.2009.934083
  7. F. Ahmad, K. Hudha, F. Imaduddin, and H. Jamaluddin, “Modelling, validation and adaptive PID control with pitch moment rejection of active suspension system for reducing unwanted vehicle motion in longitudinal direction,” Int. J. Veh. Syst. Model. Test., vol. 5, no. 4, pp. 312–346, 2010, doi: 10.1504/IJVSMT.2010.038036
  8. H. Qi, N. Zhang, Y. Chen, and B. Tan, “A comprehensive tune of coupled roll and lateral dynamics and parameter sensitivity study for a vehicle fitted with hydraulically interconnected suspension system,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 235, no. 1, pp. 143–161, 2021, doi: 10.1177/0954407020944287
  9. H. H. Huang and M. J. Tsai, “Vehicle cornering performance evaluation and enhancement based on CAE and experimental analyses,” Appl. Sci., vol. 9, no. 24, 2019, doi: 10.3390/app9245428
  10. D. A. Panke and N. H. Ambhore, “Experimental Testing of Transient and Steady State Handling Characteristics of Passenger Vehicle,” Int. J. Curr. Eng. Technol., vol. 32824, no. 5, pp. 3282–3285, 2014, [Online]. Available: http://inpressco.com/category/ijcet
  11. I. Standard, “Iso 7401 Iso 7401:2011(E) Copyright Protected Document,” vol. 2011, 2011, [Online]. Available: www.iso.org
  12. X. Yang and J. Gander, “Driver’s Preview Strategy and its Impact on NATO Double Lane Change Maneuver,” SAE Int. J. Mater. Manuf., vol. 4, no. 1, pp. 1025–1035, 2011, doi: 10.4271/2011-01-0980
  13. I. Standard, “ISO 3888-1:2018 Passenger cars — Test track for a severe lane-change manoeuvre — Part 1: Double lane-change,” Int. Organ. Stand., vol. 2018, 2018
  14. S. Yun, J. Lee, W. Jang, D. Kim, M. Choi, and J. Chung, “Dynamic Modeling and Analysis of a Driving Passenger Vehicle,” Appl. Sci., vol. 13, no. 10, 2023, doi: 10.3390/app13105903
  15. S. A. E. International and S. A. E. Transactions, “The Basic Nature of Vehicle Understeer- Oversteer,” vol. 74, pp. 387–422, 1966
  16. Á. Fehér, S. Aradi, and T. Bécsi, “Hierarchical evasive path planning using reinforcement learning and model predictive control,” IEEE Access, vol. 8, pp. 187470–187482, 2020, doi: 10.1109/ACCESS.2020.3031037
  17. P. H. Cronjé and P. S. Els, “Improving off-road vehicle handling using an active anti-roll bar,” J. Terramechanics, vol. 47, no. 3, pp. 179–189, 2010, doi: 10.1016/j.jterra.2009.09.003

Last update:

No citation recorded.

Last update:

No citation recorded.