skip to main content

ANALISIS KETIDAKPASTIAN DATA PERHITUNGAN PERPINDAHAN PANAS DAN PRESSURE DROP ALIRAN UDARA MELEWATI TUBE PANAS DI DALAM SALURAN

*Yosef Gokiasi Patar Napitu  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Syaiful Syaiful  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Bambang Yunianto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract
CDW (Concave Delta Winglet) adalah jenis vortex generator (VG) yang efektif untuk meningkatkan perpindahan panas. Perforated Concave Delta Winglet Vortex Generators (PCDW VGs) memiliki kemampuan mengurangi pressure drop dibandingkan dengan CDW VGs konvensional. Oleh karena itu, penelitian eksperimental ini bertujuan untuk mengevaluasi dampak PCDW VGs terhadap kinerja termalhidrolik dengan memvariasikan sudut serang, aspek rasio, dan susunan VGs. PCDW VGs disusun dalam konfigurasi common-flow-down dengan variasi sudut serang 10° dan 20°, serta konfigurasi inline dan staggered pada aspek rasio 1 hingga 3 dengan interval 0,5. Didapati bahwa, Overall Error Nu untuk seluruh variasi PCDW berada dibawah 1%. Begitu juga nilai overall error pressure drop berada di bawah 4% untuk seluruh variasi VGs.
Fulltext View|Download
Keywords: laju perpindahan panas; perforated concave delta winglet; pressure drop; vortex generator
  1. A. Datta, D. Sanyal, and A. K. Das, “Numerical investigation of heat transfer in microchannel using inclined longitudinal vortex generator,” Appl Therm Eng, vol. 108, pp. 1008–1019, 2016, doi: 10.1016/j.applthermaleng.2016.07.165
  2. M. Fiebig, P. Kallweit, N.K. Mitra, S. Tiggelbeck, Heat transfer enhancement and drag by longitudinal vortex generators in channel flow, Experimental Thermal and Fluid Science 4 (1991) 103–114
  3. Z. Zhao, L. Luo, D. Qiu, X. Zhou, Z. Wang, and B. Sundén, “Experimental evaluation of longitudinal and transverse vortex generators on the endwall of a serpentine passage,” International Journal of Thermal Sciences, vol. 176, Jun. 2022, doi: 10.1016/j.ijthermalsci.2022.107521
  4. H. Z. Demirağ, M. Doğan, and A. A. İğci, “The experimental and numerical investigation of novel type conic vortex generator on heat transfer enhancement,” International Journal of Thermal Sciences, vol. 191, Sep. 2023, doi: 10.1016/j.ijthermalsci.2023.108383
  5. C. B. Allison and B. B. Dally, “Effect of a delta-winglet vortex pair on the performance of a tube-fin heat exchanger,” Int J Heat Mass Transf, vol. 50, no. 25–26, pp. 5065–5072, Dec. 2007, doi: 10.1016/j.ijheatmasstransfer.2007.08.003
  6. M. Dogan and S. Erzincan, “Experimental investigation of thermal performance of novel type vortex generator in rectangular channel,” International Communications in Heat and Mass Transfer, vol. 144, May 2023, doi: 10.1016/j.icheatmasstransfer.2023.106785
  7. W. Wang, Y. Bao, and Y. Wang, “Numerical investigation of a finned-tube heat exchanger with novel longitudinal vortex generators,” Appl Therm Eng, vol. 86, pp. 27–34, Apr. 2015, doi: 10.1016/j.applthermaleng.2015.04.041.[8]Song,K.,Tagawa,T.,Chen,Z.andZhang,Q.,2019.Heattransfercharacteristicsofconcaveandconvexcurvedvortexgeneratorsinthechannelofplateheatexchangerunderlaminarflow.InternationalJournalofThermalSciences,137,pp.215-228
  8. J. M. Wu and W. Q. Tao, “Effect of longitudinal vortex generator on heat transfer in rectangular channels,” Appl Therm Eng, vol. 37, pp. 67–72, 2012, doi: 10.1016/j.applthermaleng.2012.01.002.[10]Bagheri,H.,Mirjalily,S.A.A.,Oloomi,S.A.A.andSalimpour,M.R.,2021.Effectsofmicro-vortexgeneratorsonshockwavestructureinalowaspectratioduct,numericalinvestigation.ActaAstronautica,178,pp.616-624
  9. Wate, Parag, Volker Coors, Marco Iglesias, and Darren Robinson. 2019. “Uncertainty Assessment of Building Performance Simulation.” Pp. 257–87 in Elsevier eBooks
  10. Moffat, R. J. 1985. “Using Uncertainty Analysis in the Planning of an Experiment.” Journal of Fluids Engineering-Transactions of the Asme 107(2):173–78. doi: 10.1115/1.3242452
  11. Coleman, Hugh W., and W. Glenn Steele. 1995. “Engineering Application of Experimental Uncertainty Analysis.” AIAA Journal 33(10):1888–96. doi: 10.2514/3.12742

Last update:

No citation recorded.

Last update:

No citation recorded.