skip to main content

PERBEDAAN HASIL PENGELASAN MICRO FRICTION STIR WELDING UNTUK MATERIAL ALUMINIUM 1100 DENGAN VARIASI BENTUK STEEL TOOL DAN MATERIAL STEEL TOOL

*Ristyan Wijayanto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Rusnaldy Rusnaldy  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Paryanto Paryanto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Penelitian ini fokus pada hasil analisa pengelasan micro friction stir welding (µFSW) dengan jenis specimen alumunium al 1100 dengan dua jenis material pin tool pengelasan dengan jenis H13 dan AISI D2-2379 dengan variasi model pin tool yaitu dengan jenis Tapered cylinder pin steel tool dan Stepped cylinder pin steel tool. Penelitian ini melibatkan pengujian visual,uji tarik,pengamatan struktur mikro dan makro specimen hasil pengelasan microfriction stir welding. Pada pengujian melibatkan beberapa parameter penelitian seperti kecepatan putaran spindle pada mesin microfriction stir welding,kedalaman penekanan pengelasan (depth plunge),jenis material pin tool,dan material specimen pengelasan.Setelah semua pengujian dan pengamatan pada hasil pengelasan dilaksanakan,peneliti menghitung digram uji tarik dan memilah komposisi struktur pada hasil pengelasan specimen. Hasil penelitian ini diharapkan berkontribusi dalam perkembangan inovasi dalam dunia pengelasan khususnya pengelasan yang membutuhkan ketelitian tinggi dengan Tingkat ketebalan specimen pengelasan dibawah 1mm. Selain itu, penelitian ini juga dapat menjadi dasar untuk pengembangan lebih lanjut dalam inovasi microfriction stir welding pada bidang Teknik mesin dan disiplin ilmu lainnya.

Fulltext View|Download
Keywords: depth plunge; desain pin steel tool; friction welding; microfriction stir welding
  1. Huang, Y., Meng, X., Zhang, Y., Cao, J., & Feng, J. (2017). Micro friction stir welding of ultra-thin Al-6061 sheets. Journal of Materials Processing Technology, 250(July), 313–319. https://doi.org/10.1016/j.jmatprotec.2017.07.031
  2. Wang, K., Khan, H. A., Li, Z., Lyu, S., & Li, J. (2018). Micro friction stir welding of multilayer aluminum alloy sheets. Journal of Materials Processing Technology, 260(May), 137–145. https://doi.org/10.1016/j.jmatprotec.2018.05.029
  3. Colegrove, H. R. S. and P. A. (2007). Process Modelling, Chapter 10 in Friction Stir Welding and Processing. Friction Stir Welding and Processing, 187–217. https://doi.org/10.1361/fswp2007p001
  4. Huang, Y., Meng, X., Lv, Z., Huang, T., Zhang, Y., Cao, J., Zhou, L., & Feng, J. (2019). Microstructures and mechanical properties of micro friction stir welding (μFSW) of 6061-T4 aluminum alloy. Journal of Materials Research and Technology, 8(1), 1084–1091. https://doi.org/10.1016/j.jmrt.2017.10.010
  5. Adnan, F., Sajuri, Z., Baghdadi, A. H., & Omar, M. Z. (2020). Effects of rapid heating and uniaxial loading on the phase transformation and mechanical properties of direct partial remelted butt joint of AISI D2 tool steel. Materials Science and Engineering: A, 797. https://doi.org/10.1016/j.msea.2020.140250
  6. Abdul Khaliq, U., Muhamad, M. R., Yusof, F., Ibrahim, S., Mohd Isa, M. S., Chen, Z., & Çam, G. (2023). A review on friction stir butt welding of aluminum with magnesium: A new insight on joining mechanisms by interfacial enhancement. In Journal of Materials Research and Technology (Vol. 27, pp. 3757–3786). Elsevier Editora Ltda. https://doi.org/10.1016/j.jmrt.2023.10.158
  7. Ai, Y., Lei, C., Cheng, J., & Mei, J. (2023). Prediction of weld area based on image recognition and machine learning in laser oscillation welding of aluminum alloy. Optics and Lasers in Engineering, 160. https://doi.org/10.1016/j.optlaseng.2022.107258
  8. Bi, Y., Zhang, X., Lu, L., Xu, Z., Xie, Z., Chen, B., Liang, Z., Sun, Z., & Luo, Z. (2023). Interface bonding mechanism and microstructure evolution in current-induced solid-state welding of Zr–Sn/Zr–Sn–Nb alloy. Journal of Materials Research and Technology, 26, 5888–5901. https://doi.org/10.1016/j.jmrt.2023.09.007
  9. Du, X., Liu, X., Shen, Y., Liu, R., & Wei, Y. (2023). H13 tool steel fabricated by wire arc additive manufacturing: Solidification mode, microstructure evolution mechanism and mechanical properties. Materials Science and Engineering: A, 883. https://doi.org/10.1016/j.msea.2023.145536
  10. Heppner, E., & Woschke, E. (2022). A framework for modelling the manufacturing process of friction welded lightweight structures. Finite Elements in Analysis and Design, 205. https://doi.org/10.1016/j.finel.2022.103751

Last update:

No citation recorded.

Last update:

No citation recorded.