skip to main content

REKONSTRUKSI dan SIMULASI ELEMEN HINGGA PADA VERTEBRA LUMBALIS 1 SAMPAI SACRALIS 1 DENGAN KONDISI PEMBEBANAN BERBEDA

*Hizkia Christian Putra Setiadi  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Jamari Jamari  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Tri Indah Winarni  -  Department of Anatomy, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract
Tulang belakang manusia terdiri dari struktur komplek seperti vertebra, diskus intervertebralis, ligamen, dan otot. Dalam diskur intervertebralis, degenerasi dapat terjadi dan menyebabkan rasa sakit di punggung bawah. Penyebab pasien yang mengalami spondylosis adalah adanya degenerasi diskus intervebralis yang ditandari dengan penyempitan celah sendi. Melihat nilai tegangan von Mises dalam komponen diskus intervertebralis, ditemukan bahwa nilai teganan dari von Mises memliki hubungan berbanding terbalik dengan nilai parameter tinggi diskus. Parameter spinopelvic pada penlitian ini yaitu pengukuran lumbar lordosis dilakukan dengan metode Cobb. Didapati bahwa sudut lumbar lordosis pada pasien adalah 9.54⁰. Ventral Disc Height (vDH) dan Dorsal Disc Height (dDH) diukur pada data CT scan pasien yang didapatkan dari Rumah Sakit Islam Sultan Agung. Pengukuran vDH dan dDH dilakukan pada aplikasi Mimics 21.0. Nilai Ventral Disc Height (vDH) lumbalis 1 hingga sacralis 1 secara berturut-turut diperoleh 6.79 mm, 9.69 mm, 11.95 mm, 13.90 mm, dan 18.22 mm. Untuk Dorsal Disc Height (dDH) diperoleh 6.21 mm, 6.04 mm, 7.12 mm, 7.17 mm, dan 6.67 mm. Simulasi dilakukan untuk model elemen hingga (FEM) vertebral lumbar 1 ke sakralis 1 dalam tiga kondisi pembebanan berbeda. Von Mises terbesar pada diskus intervertebralis untuk kondisi pembebanan yang berbeda dalam penelitian ini adalah di annulus fibrosus, dan nucleus pulposus L2-L3 pada pembebanan anterior flexion, laterial flexion, dan axial rotation.
Fulltext View|Download
Keywords: degenerasi; diskus intervertebralis; fem
  1. W. M. Park, K. Kim, and Y. H. Kim, “Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine,” Comput Biol Med, vol. 43, no. 9, pp. 1234–1240, Sep. 2013, doi: 10.1016/j.compbiomed.2013.06.011
  2. X. Lu et al., “Biomechanical effects of interbody cage height on adjacent segments in patients with lumbar degeneration: a 3D finite element study,” J Orthop Surg Res, vol. 17, no. 1, Dec. 2022, doi: 10.1186/s13018-022-03220-3
  3. R. Tsujimoto et al., “Prevalence of lumbar spondylosis and its association with low back pain among community-dwelling Japanese women,” BMC Musculoskelet Disord, vol. 17, no. 1, pp. 1–6, Dec. 2016, doi: 10.1186/s12891-016-1343-x
  4. Y. Aoki et al., “Prevalence of lumbar spondylolysis and spondylolisthesis in patients with degenerative spinal disease,” Sci Rep, vol. 10, no. 1, Dec. 2020, doi: 10.1038/s41598-020-63784-0
  5. X. yi Cai et al., “Biomechanical Effect of L4–L5 Intervertebral Disc Degeneration on the Lower Lumbar Spine: A Finite Element Study,” Orthop Surg, vol. 12, no. 3, pp. 917–930, Jun. 2020, doi: 10.1111/os.12703
  6. Masni-Azian and M. Tanaka, “Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study,” Comput Biol Med, vol. 98, pp. 26–38, Jul. 2018, doi: 10.1016/j.compbiomed.2018.05.010
  7. H. Ding, L. Liao, P. Yan, X. Zhao, and M. Li, “Three-Dimensional Finite Element Analysis of L4-5 Degenerative Lumbar Disc Traction under Different Pushing Heights,” J Healthc Eng, vol. 2021, 2021, doi: 10.1155/2021/1322397
  8. C. Yilgor et al., “Relative lumbar lordosis and lordosis distribution index: Individualized pelvic incidence-based proportional parameters that quantify lumbar lordosis more precisely than the concept of pelvic incidence minus lumbar lordosis,” Neurosurg Focus, vol. 43, no. 6, Dec. 2017, doi: 10.3171/2017.8.FOCUS17498
  9. M. Hohenhaus et al., “The challenge of measuring spinopelvic parameters: inter-rater reliability before and after minimally invasive lumbar spondylodesis,” BMC Musculoskelet Disord, vol. 23, no. 1, Dec. 2022, doi: 10.1186/s12891-022-05055-9
  10. G. S. Skaf, C. M. Ayoub, N. T. Domloj, M. J. Turbay, C. El-Zein, and M. H. Hourani, “Effect of Age and Lordotic Angle on the Level of Lumbar Disc Herniation,” Adv Orthop, vol. 2011, pp. 1–6, 2011, doi: 10.4061/2011/950576
  11. M. Hohenhaus et al., “The challenge of measuring spinopelvic parameters: inter-rater reliability before and after minimally invasive lumbar spondylodesis,” BMC Musculoskelet Disord, vol. 23, no. 1, Dec. 2022, doi: 10.1186/s12891-022-05055-9
  12. S. Kang et al., “Analysis of the physiological load on lumbar vertebrae in patients with osteoporosis: a finite-element study,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-15241-3
  13. A.-R. Cho, S.-B. Cho, J.-H. Lee, and K.-H. Kim, “Experimental Study Effect of Augmentation Material Stiffness on Adjacent Vertebrae after Osteoporotic Vertebroplasty Using Finite Element Analysis with Different Loading Methods”, [Online]. Available: www.painphysicianjournal.com
  14. I. P. Pappou, F. P. Cammisa, and F. P. Girardi, “Correlation of end plate shape on MRI and disc degeneration in surgically treated patients with degenerative disc disease and herniated nucleus pulposus,” Spine Journal, vol. 7, no. 1, pp. 32–38, Jan. 2007, doi: 10.1016/j.spinee.2006.02.029

Last update:

No citation recorded.

Last update:

No citation recorded.