skip to main content

REKONSTRUKSI DAN PENGUKURAN PARAMETER ATROPOMETRI TULANG VERTEBRA LUMBALIS 1 HINGGA SACRALIS 1

*Dylan Paramartha  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Jamari Jamari  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Tri Indah Winarni  -  Department of Medical, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract
Permasalahan lumbar spondylosis merupakan suatu penyakit yang sering terjadi pada tulang punggung manusia terutama pada tulang punggung bagian bawah atau dikenal dengan bagian vertebra lumbalis. Penyakit ini disebabkan oleh beberapa akibat salah satunya yaitu degenerasi pada diskus tulang belakang. Untuk menganalisis permasalahan dari segi mekanis yang ada pada tulang vertebra lumbalis maka diperlukan adanya prosedur baik untuk mengukur paprameter antropometri vertebra lumbalis maupun rekonstruksi tulang vertebra lumbalis dari file ct scan menjadi model tiga dimensi yang bisa disimulasikan menggunakan metode finite element. Pada studi ini digunakan data ct scan dari  pasien wanita berusia 47 tahun dan berpotensi mengalami degenerasi pada diskus tulang belakang. Pada studi ini proses pengukuran parameter antropometri tulang vertebra lumbalis menggunakan software Mimics 21.0 diperoleh sudut lumbar losrdosis yang telah diukur menggunakan Cobb’s yaitu sebesar 26.50° kemudian untuk nilai ventral disc height vertebra lumbalis 1 hinga sacralis 1 secara berturut-turut diperoleh 7.53 mm, 8.32 mm, 8.46 mm, 13.35 mm, dan 13.35 mm, sedangkan untuk dorsal disc height adalah 3.22 mm, 3.32 mm, 3.84 mm, 6.01 mm, dan 5.03 mm. Kemudian untuk rekonstruksi model vertebra lumbalis bisa dilakukan dengan metode segmentasi menggunakan software Mimics 21.0, kemudian proses surface patching menggunakan software Geomagic Studio 12.0, dan terakhir pembuatan komponen diskus intervertebrata menggunakan software Solidworks 2018.
Fulltext View|Download
Keywords: lumbar vertebrata; model reconstruction
  1. R. Tsujimoto et al., “Prevalence of lumbar spondylosis and its association with low back pain among community-dwelling Japanese women,” BMC Musculoskelet. Disord., vol. 17, no. 1, pp. 1–6, 2016, doi: 10.1186/s12891-016-1343-x
  2. Y. Aoki et al., “Prevalence of lumbar spondylolysis and spondylolisthesis in patients with degenerative spinal disease,” Sci. Rep., vol. 10, no. 1, pp. 1–4, 2020, doi: 10.1038/s41598-020-63784-0
  3. C. Yilgor et al., “Relative lumbar lordosis and lordosis distribution index: Individualized pelvic incidence-based proportional parameters that quantify lumbar lordosis more precisely than the concept of pelvic incidence minus lumbar lordosis,” Neurosurg. Focus, vol. 43, no. 6, pp. 1–9, 2017, doi: 10.3171/2017.8.FOCUS17498
  4. M. Benoist, “Natural history of the aging spine,” Eur. Spine J., vol. 12, no. SUPPL. 2, pp. 86–89, 2003, doi: 10.1007/s00586-003-0593-0
  5. K. Singh and F. M. Phillips, “The biomechanics and biology of the spinal degenerative cascade,” Semin. Spine Surg., vol. 17, no. 3 SPEC. ISS., pp. 128–136, 2005, doi: 10.1053/j.semss.2005.06.001
  6. T. B. Id, G. C. Id, and F. Galbusera, “Dependence of lumbar loads on spinopelvic sagittal alignment : An evaluation based on musculoskeletal modeling,” pp. 1–18, 2019
  7. Y. Cho and D. Ph, “Evaluation of Global Sagittal Balance in Koreans Adults,” vol. 60, no. 5, pp. 560–566, 2017
  8. T. B. Sullivan, N. Marino, F. G. Reighard, and P. O. Newton, “Relationship Between Lumbar Lordosis and Pelvic Incidence in the Adolescent Patient : Normal Cohort Analysis and Literature Comparison *,” Spine Deform., vol. 6, no. 5, pp. 529–536, 2018, doi: 10.1016/j.jspd.2018.02.002
  9. J. Tonosu, H. Oka, K. Watanabe, H. Abe, and A. Higashikawa, “Characteristics of the spinopelvic parameters of patients with sacroiliac joint pain,” Sci. Rep., no. 0123456789, pp. 1–5, 2021, doi: 10.1038/s41598-021-84737-1
  10. J. C. Le Huec, W. T. Y. Mohsinaly, and C. B. A. Faundez, “Sagittal balance of the spine,” Eur. Spine J., vol. 28, no. 9, pp. 1889–1905, 2019, doi: 10.1007/s00586-019-06083-1
  11. J. C. Le Huec and S. A. Leijssen, “Pelvic parameters : origin and significance,” vol. 20, pp. 564–571, 2011, doi: 10.1007/s00586-011-1940-1
  12. M. Hohenhaus et al., “The challenge of measuring spinopelvic parameters: inter-rater reliability before and after minimally invasive lumbar spondylodesis,” BMC Musculoskelet. Disord., vol. 23, no. 1, pp. 1–8, 2022, doi: 10.1186/s12891-022-05055-9
  13. G. A. M. D. Daysal, B. M. D. Goker, E. M. D. Gonen, M. D. M. D. Demirag, and S. M. D. Haznedaroglu, “Brief report The relationship between hip joint space width , center edge angle and acetabular depth,” pp. 1446–1451, 2007, doi: 10.1016/j.joca.2007.05.016
  14. A. V Pavlova et al., “Survey of Health and Development,” no. April, pp. 248–259, 2017, doi: 10.1111/joa.12631
  15. C. S. Fischer et al., “The neck – shaft angle : an update on reference values and associated factors,” vol. 91, no. 1, pp. 53–57, 2020, doi: 10.1080/17453674.2019.1690873
  16. X. Lu et al., “Biomechanical effects of interbody cage height on adjacent segments in patients with lumbar degeneration: a 3D finite element study,” J. Orthop. Surg. Res., vol. 17, no. 1, pp. 1–9, 2022, doi: 10.1186/s13018-022-03220-3
  17. C. Nan, Z. Ma, Y. Liu, L. Ma, J. Li, and W. Zhang, “Impact of cage position on biomechanical performance of stand-alone lateral lumbar interbody fusion: a finite element analysis,” BMC Musculoskelet. Disord., vol. 23, no. 1, pp. 1–9, 2022, doi: 10.1186/s12891-022-05873-x
  18. H. Shen, G. R. Fogel, J. Zhu, Z. Liao, and W. Liu, “Biomechanical Analysis of Different Lumbar Interspinous Process Devices: A Finite Element Study,” World Neurosurg., vol. 127, pp. e1112–e1119, 2019, doi: 10.1016/j.wneu.2019.04.051
  19. G. Eremina, A. Smolin, J. Xie, and V. Syrkashev, “Development of a Computational Model of the Mechanical Behavior of the L4–L5 Lumbar Spine: Application to Disc Degeneration,” Materials (Basel)., vol. 15, no. 19, pp. 1–19, 2022, doi: 10.3390/ma15196684
  20. M. Zhang, W. Ren, Z. Mo, J. Li, F. Pu, and Y. Fan, “Biomechanics of adjacent segment after three-level lumbar fusion, hybrid single-level semi-rigid fixation with two-level lumbar fusion,” Comput. Methods Biomech. Biomed. Engin., vol. 25, no. 4, pp. 455–463, 2022, doi: 10.1080/10255842.2021.1959557
  21. G. S. Skaf, C. M. Ayoub, N. T. Domloj, M. J. Turbay, C. El-zein, and M. H. Hourani, “Effect of Age and Lordotic Angle on the Level of Lumbar Disc Herniation,” vol. 2011, no. di, 2020, doi: 10.4061/2011/950576
  22. W. Zhang et al., “C7 sacral tilt (C7ST): a novel spinopelvic parameter reveals the relationship between pelvic parameters and global spinal sagittal balance and converts pelvic parameters into spinal parameters,” Eur. Spine J., vol. 29, no. 9, pp. 2384–2391, 2020, doi: 10.1007/s00586-020-06548-8

Last update:

No citation recorded.

Last update:

No citation recorded.