skip to main content

PEMODELAN JUMLAH KASUS KEMATIAN BAYI DAN IBU DI PROVINSI LAMPUNG MENGGUNAKAN BIVARIATE GENERALIZED POISSON REGRESSION

*Dewi Indra Setiawan  -  Department of Data Science, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Indonesia
Purhadi Purhadi orcid scopus  -  Department of Statistics, Institut Teknologi Sepuluh Nopember, Jl. Teknik Mesin No.175, Keputih, Kec. Sukolilo, Surabaya, Jawa Timur 60111, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Maternal and infant mortality are closely related, as the fetus receives nutrition from the mother through the placenta. Therefore, the mother's health condition during pregnancy directly impacts fetal development. Additionally, the mother's role in caring for the infant significantly affects the child's growth and survival. One of the goals of the Lampung Provincial Health Office’s Regional Medium-Term Development Plan (RPJMD) for 2020–2024 is to reduce maternal and infant mortality. The expected health target by the end of 2024 is to lower maternal deaths to 110 cases and infant deaths to 520 cases. This study employs the Bivariate Generalized Poisson Regression (BGPR) method to identify factors influencing maternal and infant mortality in Lampung Province in 2022. BGPR is suitable for handling overdispersed count data with two correlated response variables. Based on the AICc criterion, the best model includes all prediktor variables. The results show that the percentage of deliveries assisted by health professionals (X1) significantly affects maternal mortality, while both the percentage of deliveries by health professionals (X1) and the percentage of fourth antenatal care visits (K4) (X3) significantly affect infant mortality.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Data Jumlah Kematian Bayi dan Ibu di Lampung
Subject
Type Research Instrument
  Download (13KB)    Indexing metadata
Keywords: AICc, Bivariate Generalized Poisson Regression, Infant Mortality, Maternal Mortality, Overdispersion.

Article Metrics:

  1. Aminullah, A. A. H., & Purhadi, P, Pemodelan untuk Jumlah Kasus Kematian Bayi dan Ibu di Jawa Timur Menggunakan Bivariate Generalized Poisson Regression, 2020, Jurnal Sains dan Seni ITS, 8(2), D72-D78,
  2. Darnah, Utoyo, I., & Chamidah, N, Bi-response Poisson regression model for modeling effect of early marriage on maternal and infant mortality, In AIP Conference Proceedings (Vol. 2554, No. 1, p. 030005), AIP Publishing LLC, (2023, January)
  3. Draper, N. R., & Smith, H, Applied regression analysis (Vol. 326), John Wiley & Sons, 1998
  4. Famoye, F, A new bivariate generalized Poisson distribution. Statistica Neerlandica, 64(1), 112-124, 2010
  5. Hu, S,Akaike information criterion. Center for Research in Scientific Computation, 93(42), 2007
  6. Imandani, D. K, Pemodelan Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Timur Menggunakan Bivariate Generalized Poisson Regression (Doctoral dissertation, Institut Teknologi Sepuluh Nopember),2024
  7. Kemenkes RI. “Profil Kesehatan Provinsi Lampung tahun 2022”, 2023
  8. Purhadi, Sutikno, Berliana, S. M., & Setiawan, D. I, Geographically weighted bivariate generalized Poisson regression: application to infant and maternal mortality data. Letters in Spatial and Resource Sciences, 14, 79-99, 2021
  9. R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, New Jersey: Prentice Hall, 2007
  10. Rahmadini, D., Nur, I. M., & Arum, P. R, Pemodelan Bivariate Generalized Poisson Regression pada Kasus Angka Kematian di Provinsi Jawa Tengah. In Prosiding Seminar Nasional Unimus (Vol. 6), (2023, November)
  11. Setiawan, D. I, Penaksiran Parameter Dan Pengujian Hipotesis Pada Geographically Weighted Bivariate Generalized Poisson Regression (Studi Kasus: Jumlah Kematian Bayi Dan Jumlah Kematian Ibu Di Jawa Timur Tahun 2013), (2017)
  12. Purwanti, S. I, Parameter estimation and hypothesis testing of geographically and temporally weighted bivariate generalized Poisson regression. In IOP Conference Series: Earth and Environmental Science (Vol. 880, No. 1, p. 012043), IOP Publishing, (2021, October)
  13. Prahutama, A., Suparti, Munawaroh, D. A., & Utami, T. W, Modeling bivariate Poisson regression for maternal and infant mortality in Central Java, In AIP Conference Proceedings (Vol. 2329, No. 1, p. 060007), AIP Publishing LLC, (2021, February)
  14. Wardani, D. K, PENERAPAN BIVARIATE GENERALIZED POISSON REGRESSION (BGPR)(Studi Kasus Jumlah Kematian Bayi dan Kematian Ibu di Provinsi Jawa Timur tahun 2013). Exact Papers in Compilation (EPiC), 1(1), 21-26, (2019)
  15. Zamani, H., Faroughi, P., & Ismail, N, Bivariate generalized Poisson regression model: applications on health care data, Empirical Economics, 51, 1607-1621, (2016)

Last update:

No citation recorded.

Last update:

No citation recorded.