skip to main content

PERAMALAN HARGA BERAS DI INDONESIA MENGGUNAKAN METODE HOLT-WINTERS ADDITIVE EXPONENTIAL SMOOTHING DENGAN OPTIMASI GOLDEN SECTION

Yuni Nurul Faiza  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
*Suparti Suparti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Arief Rachman Hakim  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Rice is one of the staples that must be fulfilled to support human survival. As a result, if the price of rice is instable, it can cause a decrease in people's purchasing power. Therefore, a system is needed that can forecast rice prices to help maintain food security. This study uses the Holt-Winters Additive method because it can be used to predict time series data that has trend and seasonal patterns. The optimum parameter is found using the Golden Section optimization method that minimize the MAPE value. The data used is the average monthly data of rice prices at the level of large trade (wholesale) Indonesia. The results showed that the data contained elements of trend and seasonality additives and obtained the best model with α = 0.999702, β = 0.059114, γ = 0.145618. The results of measuring the forecasting ability of the formed model show that the forecast results are close to the actual data and are evidenced by the MAPE out sample value of 7.006% which is include MAPE criteria < 10% so that the forecasting ability is very high. The forecast results for 2023 show that rice prices have fluctuated but the changes are not too significant.
Fulltext View|Download
Keywords: Exponential Smoothing; Holt-Winters Additive; Golden Section; Average Price of Rice; MAPE; Forecasting.

Article Metrics:

  1. [BPS] Badan Pusat Statistik. 2023. Harga Perdagangan Besar. https://www.bps.go.id/subject/20/harga-perdagangan-besar.html. Diakses : 19 Desember 2022
  2. Ai, T.J. 2002. Penyelesaian NonLinier Programming dengan Kendala Menggunakan Modifikasi Golden Section. Jurnal Teknologi Industri Vol. 6, No. 1
  3. Al Qarani, M. A. 2018. Pengembangan Estimasi Parameter Pada Metode Exponential Smoothing Holt-Winters Additive Menggunakan Metode Optimasi Golden Section (Studi Kasus: Wisatawan Mancanegara yang Menggunakan Jasa Akomodasi di DIY). Jurnal Gaussian Vol. 7, No. 4 : Hal. 348–360
  4. Aryati, A., Purnamasari, I., dan Nasution, Y. N. 2020. Peramalan dengan Menggunakan Metode Holt-Winters Exponential Smoothing (Studi Kasus: Jumlah Wisatawan Mancanegara yang Berkunjung Ke Indonesia). Jurnal Eksponensial Vol. 11, No. 1 : Hal. 99–106
  5. Chang, P., Wang, & Liu, C. 2007. The Development of a Weighted Evolving Fuzzy Neural Network for PCB Sales Forecasting. Journal Expert System with Applications Vol.32, No. 1 : Hal.86–96
  6. Ghulam, B., Shidiq, A., Furqon, M. T., dan Muflikhah, L. 2022. Prediksi Harga Beras Menggunakan Metode Least Square. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer Vol. 6, No. 3 : Hal. 1149–1154
  7. Heizer, J., dan Render, B. 2011. Operations management global Edition 10th edition. Pearson Education, Inc (p. 890)
  8. Lestari, S., Ahmar, A. S., dan Ruliana, R. 2020. Eksplorasi Metode Triple Exponential Smoothing Pada Peramalan Jumlah Penggunaan Air Bersih di PDAM Kota Makassar. Journal of Statistics and Its Application on Teaching and Research Vol. 2, No. 3 : Hal. 128
  9. Mahkya, D., Yasin, H., dan Mukid, M. 2014. Aplikasi Metode Golden Section Untuk Optimasi Parameter Pada Metode Exponential Smoothing. Jurnal Gaussian Vol. 3, No. 4
  10. Makridakis, S., Wheelwright, S.C., dan McGee, V. E. 1999. Metode dan aplikasi peramalan. Jakarta: Erlangga
  11. Sofiana, S., Suparti, Hakim, A. R., & Triutami, I. 2020. Peramalan Jumlah Penumpang Pesawat Di Bandara Internasional Ahmad Yani Dengan Metode Holt Winter’S Exponential Smoothing Dan Metode Exponential Emoothing Event Based. Jurnal Gaussian Vol.9, No. 4 : Hal.535–545. 8
  12. Suhartono. 2008. Analisis Data Statistik dengan R. Surabaya: Lab. Statistik Komputasi ITS

Last update:

No citation recorded.

Last update:

No citation recorded.