skip to main content

OPTIMASI PORTOFOLIO MEAN-VARIANCE DENGAN ANALISIS KLASTER FUZZY C-MEANS

*La Gubu orcid scopus  -  Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam , Indonesia
Edi Cahyono orcid scopus  -  Jurusan Matematika Fakultas Matematika dan Ilmu Penetahuan Alam, Universitas Halu Oleo, Indonesia
Arman Arman scopus  -  Jurusan Matematika Fakultas Matematika dan Ilmu Penetahuan Alam, Universitas Halu Oleo, Indonesia
Herdi Budiman scopus  -  Jurusan Matematika Fakultas Matematika dan Ilmu Penetahuan Alam, Universitas Halu Oleo, Indonesia
Muh. Kabil Djafar  -  Jurusan Matematika Fakultas Matematika dan Ilmu Penetahuan Alam, Universitas Halu Oleo, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Many studies have been carried out to solve and develop the Markowitz portfolio model. This was done to correct existing models in response to the changes in financial market dynamics and the needs of capital market practitioners. In this study, we provide Mean-Variance (MV) portfolio selection via cluster analysis. Fuzzy C-Means clustering is used to separate stocks into different categories. As a comparison, stocks categories were also carried out using K-Mean clustering. Based on the Sharpe ratio, a stock from each cluster is chosen as a cluster representative. The stocks chosen for each cluster have the greatest Sharpe ratio. The MV portfolio model is used to determine the best portfolio. For the empirical analysis, we examined the fundamental data and the daily return data of stocks that were included in the LQ-45 index from August 2022 to January 2023. The fundamental data of stocks are used to form clusters and the daily return of stocks are used to construct the best portfolio. The results of this study reveal that, for all given risk aversion values, portfolio performance created by Fuzzy C-Means clustering outperformed portfolio performance produced by K-Means clustering.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (130KB)    Indexing metadata
Keywords: Clustering; Fuzzy C-Means; risk; return; portfolio; Sharpe ratio.
Funding: Universitas Halu Oleo

Article Metrics:

  1. Bezdek, J. C. 1981. Pattern Recognition with Fuzzy Objective Function Algorithms, New York. Plenum Press
  2. ( http://library.lol/main/98C46549B2E9025E9AD06D361F55D4C8)
  3. Elton, E. J. dan Gruber, M. J. 2014. Modern Portfolio Theory and Investment Analysis, 9th Edition, New York, John Wiley and Sons, Inc
  4. ( http://library.lol/main/EAE29F7EF709A741B0BDAEAE3890EAA0)
  5. Gubu, L., Rosadi, D., dan Abdurakhman. 2019. Classical Portfolio Selection with Cluster Analysis: Comparison Between Hierarchical Complete Linkage and Ward Algorithm, in Proc. The Eighth SEAMS-UGM International Conference on Mathematics and Its Applications, AIP Conference Proceedings 2192, Hal: 090004-1–090004-7. ( https://sci-hub.ru/10.1063/1.5139174)
  6. Jain, A. dan Dubes, R. 1988. Algorithms for Clustering Data, Englewood Cliffs, NJ: Prentice Hall. ( http://library.lol/main/93E6CF5B2026241A7E4D387F530616C3) d
  7. Long, N. C., Wisitponghan, N., dan Meesad, P. 2014. Clustering Stock Data for Multi-Objective Portfolio Optimization. International Journal of Computational Intelligence and Applications, Vol. 13, No. 2, Hal: 1-13
  8. ( https://sci-hub.ru/10.1142/S1469026814500114)
  9. Nanda, R., Mahanty, B., dan Tiwari, M. K. 2010. Clustering Indian Stock Market Data for Portfolio Management. Expert Syst. Appl. Vol. 37, No. 12, Hal: 8793–8798
  10. ( https://sci-hub.ru/10.1016/j.eswa.2010.06.026)
  11. Pav, S. E. 2022. The Sharpe Ratio: Statistics and Applications, Taylor & Francis Group, CRC Press
  12. ( https://www.routledge.com/The-Sharpe-Ratio-Statistics-and-Applications/Pav/p/ book/9781032019314)
  13. Sukono. 2011. Pengukuran Value-at-Risk dengan Volatilitas Tak Konstan dan Efek Long Memory, Disertasi Program Doktor Matematika Universitas Gadjah Mada, Tidak dipublikasi
  14. Supandi, E. D. 2017. Pengembangan Model Portofolio Mean-Variance Melalui Metode Estimasi Robust dan Optimasi Robust, Disertasi Program Doktor Matematika Universitas Gadjah Mada, Tidak dipublikasi
  15. Tola, V., Lillo, F., Gallegati, M., dan Mantegna, R. N. 2008. Cluster Analysis for Portfolio Optimization. J. Econ. Dyn. Control, Vol. 32, No. 1, Hal: 235–258
  16. ( https://sci-hub.ru/10.1016/j.jedc.2007.01.034)

Last update:

No citation recorded.

Last update:

No citation recorded.