skip to main content

OPTIMALISASI CLUSTER PADA CLUSTER HIERARKI MENGGUNAKAN PSEUDO F-STATISTIC CALINSKI HARABASZ UNTUK KETAHANAN PANGAN

*Mita Nourma Maulina  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
mustafid mustafid  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
bagus arya saputra  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Food security is the ability of a nation to ensure that all of its inhabitants obtain food in sufficient quantities, of proper quality, based on optimizing the utilization of food. The food security of each region is different, resulting a region to have low or high food security, one of which is the area in Pati Regency as a research area. To find out this, area clustering was carried out based on variables of planted area, food production, number of food supply facilities and infrastructure, number of people with low welfare levels, number of sub-districts without sufficient connecting access, number of households without access to clean water, area, number of residents, number of households, and level of settlement. The grouping of food security areas was carried out using the Hierarchical Clustering method based on Euclidean distance calculations with cluster validation using Calinski Harabasz Pseudo F-Statistics. The results of this study obtained the optimum number of clusters as 7 clusters in the Complete Linkage closest distance calculation technique which has the highest Pseudo-F value. High quality food security is found in the highlands, namely, Gembong District, Cluwak District, Trangkil District, and Gunung Wungkal District. Meanwhile, the low quality of food security is found in lowland areas, namely, Juwana District and Pati District.
Fulltext View|Download
Keywords: Agglomerative Hierarchical Clustering; GUI Python, Food Security System; Calinski Harabasz Pseudo F-Statistic

Article Metrics:

  1. Andini, P. D. T. 2017. Pengelompokan Kabupaten/Kota di Provinsi Jawa Timur Berdasarkan Indikator Pendidikan Formal Wajib Belajar 12 Tahun Menggunakan Cluster Hierarchy. Skripsi. Institut Teknologi Sepuluh November
  2. Anton, H., Rorres, C. 2004. Aljabar Linear Algebra: Versi Aplikasi. Edisi 8. Diterjemahkan oleh: Indriasari, R., & Harmein, I. Jakarta: Erlangga. Terjemahan dari: Elementary Linear Algebra: Apllication Version
  3. Baliwati, Y.F., A. Khomsan, C. M. Dwiriani. 2004. Pengantar Pangan dan Gizi. Penebar Swadaya: Jakarta
  4. Han, J., Kamber, M., Pei, J. 2012. Data Mining Cocepts and Techniques Third Edition. San Massachusetts (US): Morgan Kaufmann Publisher
  5. Johnson, R., Winchern, D. 2007. Applied Multivariate Statistical Analysis (6nd Edition ed.). United State of America: Pearson Prentice-Hall
  6. Kaur, Maninderjit, Sushil, K. G. 2014. Survey on Clustering Techniques in Data Mining for Software Engineering. International Journal of Advanced and Innovative Research, No. 3, Hal: 238-243
  7. Kingrani, Kumr S., Levene, Mark, Zhang, Dell. 2018. Estimating the Number of Cluster Using Diversity. Artificial Intelligence Research Vol. 7, No. 1, Hal: 15-22. ISSN 1927-6974
  8. Larose, Daniel, T., Chantal D. 2015. Data Minining and Predictive Analytics. Second Edition, John Wiley & Sons
  9. Nugroho, S. 2008. Statistika Multivariat Terapan. Edisi Pertama. Bengkulu: UNIP Press
  10. Sudirman, Windarto, A.P., Wanto, A. 2018. Data Mining Tools⃒ rapidminer: K-means Method on Clustering of Rice Crops in Indonesia. IOP Conferences Series: Materials Science and Engineering Vol. 420, No. 012089. DOI: 10.1088/1575-899X/420/1/012089
  11. Suryana, A. 2014. Menuju Ketahanan Pangan Indonesia Berkelanjutan 2025: Tantangan dan Penanganannya. Agro Ekonomi Vol. 23, No. 2, Hal: 123-135
  12. Santoso, S. 2018. Mahir Statistik Multivariat dengan SPSS. Jakarta: PT Elex Media Komputindo
  13. Wang, X., Xu, Y., 2019. An Improved Index for Clustering Validation Based on Silhoutte Index and Calinski-Harabasz Indek. IOP Conf. Series: Materials Science and Engineering Vol. 569, No. 052024. DOI: 10.1088/1757-899X/569/5/052014

Last update:

No citation recorded.

Last update:

No citation recorded.