skip to main content

KLASIFIKASI PENYAKIT HIPERTENSI MENGGUNAKAN METODE SVM GRID SEARCH DAN SVM GENETIC ALGORITHM (GA)

*Fithroh Oktavi Awalullaili  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Dwi Ispriyanti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tatik Widiharih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Hypertension is an abnormally high pressure that occurs inside the arteries. Hypertension increased by 8.3% from 2013 based on health research in 2018. Some of the factors that cause hypertension include gender, age, salt consumption, cigarette consumption, cholesterol levels and a family history of hypertension. The data in this study are data on normal and hypertensive patients at the Padangsari Health Center for the period of July – December 2021. This study will classify blood pressure with the aim of obtaining the results of the accuracy of the classification of the methods used. The method used in this study is a support vector machine (SVM). SVM is a well-known algorithm, producing optimal solutions to classification problems. SVM uses kernel functions for separable nonlinear data. The displacement kernels used in this study are linear and RBF. SVM has the disadvantage of determining the best parameters, to overcome these weaknesses developed the method of finding the best parameters. The search for the parameters of this study used grid search and genetic algorithm (GA).  Grid search has the advantage of producing parameters that are close to the optimal value, while GA has the advantage of being easy to find global optimum values. This study will compare the classification results of the SVM grid search and SVM GA methods. The results of this study obtained the method that has the best accuracy, namely SVM grid search using a radial base function (RBF) kernel with an accuracy of 89.22%.
Fulltext View|Download
Keywords: Hypertention; Support Vector Machine; Grid Search; Genetic Algorithm

Article Metrics:

  1. Abe, S., 2005. Support Vector Machines for Pattern Classification. Verlag London: Springer
  2. Agrawal, T., 2021. Hyperparameter Optimization in Machine Learning. India: Apress
  3. Aulia, T. M. P., Arifin, N. dan Mayasari, R., 2021. Perbandingan Kernel Support Vector Machine (SVM) dalam Penerapan Analisis Sentimen Vaksinasi Covid-19. SINTECH, 4(2), pp. 139-145
  4. Cristianini, N. dan Shawe-Taylor, J., 2000. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. United Kingdom: Cambridge University Pers
  5. Darmawan, A., 2015. Penerapan Model Support Vector Machine Text Mining Pada Komentar Review Smartphone Android vs Blackberry dengan Teknik Optimasi Genetic Algorithm. Factor Exacta, VIII(2), pp. 100-115
  6. Gorunescu, F., 2011. Data Mining Concepts, Models and Techniques. Verlag Berlin Heidelberg: Springer
  7. Han, J., Kamber, M. dan Pei, J., 2012. Data Mining Concepts and Techniques. USA: Elsevier
  8. Haryanto, Y. & Hidayatullah, R. S., 2016. Komparasi Penerapan Algoritma Support Vector Machine dan SVM Optimasi Genetic Algorithms dalam Penentuan Penerimaan Dana KJP pada SD Negeri 02 Meruya Utara Jakarta Barat. Semarang, Seminar Nasional Ilmu Komputer (SNIK)
  9. Ilyas, S., 2016. Tekanan Darah Tinggi (Hipertensi)
  10. Available at: http://p2ptm.kemkes.go.id/uploads/2016/10/Tekanan-Darah-Tinggi-Hipertensi.pdf [Diakses 11 Januari 2022]
  11. Meilina, P., 2015. Penerapan Data Mining dengan metode Klasifikasi Menggunakan Decison Tree dan Regresi. Jurnal Teknologi, 7(1), pp. 12-20
  12. Nugroho, P. S. dan Fahrurodzi, D. S., 2018. Faktor Obesitas dan Kolestrol Terhadap Hipertensi di Indonesia (Indonesian Family Life Survey V). Ghidza : Jurnal Gizi dan Kesehatan, 2(2), pp. 44-48
  13. Nuraini, B., 2015. Risk Factors of Hypertension. J Majority, IV(5), pp. 10-19
  14. Purnama, D. I., 2020. Peramalan Jumlah Penumpang Datang Melalui Transportasi Udara di Sulawesi Tengah Menggunakan Support Vector (SVR). Jurnal Ilmiah Matematika dan Terapan, 17(1), pp. 109-117
  15. Santosa, B., 2007. Data Mining: Teknik Pemanfaatan Data untuk Keputusan Bisnis. Yogyakarta: Graha Ilmu
  16. Setyohadi, D. B., Kristiawan, F. A. & Ernawati, 2017. Perbaikan Performasi Klasifikasi dengan Preprocessing Iterative Partitioning Filter Algorithm. TELEMATIKA, 14(1), pp. 12-20
  17. Sivanandam, S. dan Deepa, S., 2008. Introduction to Genetic Algorithms. Verlag Berlin Heidelberg: Springer
  18. Soenarta, A. A. et al., 2015. Pedoman Tatalaksana Hipertensi Pada Penyakit Kardiovaskular. Jakarta: Perki
  19. Syarif, I., Prugel-Bennett, A. dan Wills, G., 2016. SVM Parameter Optimization Using Grid Search and Genetic Algorithm to Improve Classification Performance. TELKOMNIKA, 14(4), pp. 1502-1509
  20. Windarto & Wijaya, B. S., 2012. Aplikasi Penyusunan Jadwal dengan Algoritma Genetik pada Sekolah Menengah Kejuruan Budi Mulia Tangerang. Jakarta, Prosiding Seminar Nasional Multidisiplin Ilmu
  21. Yanaeng, S., Saelee, S. dan Samai, W., 2014. Automatic Medical Case Study Essay Scoring by Support Vector Machine and Genetic Algorithms. International Journal of Information and Education Technology, IV(2), pp. 132-137

Last update:

No citation recorded.

Last update:

No citation recorded.