skip to main content

PEMODELAN JUMLAH KASUS PNEUMONIA PADA BALITA DI JAWA TIMUR MENGGUNAKAN METODE REGRESI POISSON INVERSE GAUSSIAN DILENGKAPI GUI-R

*Krisdiana Nur Utami  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Sugito Sugito  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Rukun Santoso  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Reducing toddler mortality is one of the desire of sustainable development programs.Modeling count data may be analyzed the usage of Poisson regression.The assumption that must be met in Poisson regression is that the mean and variance values must be equal, often in count data there is a violation of this assumption. This is indicated by the variance value which is greater than the mean value (overdispersion). Poisson Inverse Gaussian (PIG) regression is one form of mixed Poisson regression to model data that experience overdispersion cases. The MLE method is used to estimate the PIG regression parameters and hypothesis testing using the MLTR method. The best model of the PIG regression form is based on the smallest AIC value. The results of hypothesis testing concluded that the percentage of under-fives who received exclusive breast feeding had a significant effect on the number of pneumonia cases among toddler. Data modeling using the PIG regression method in this study is complemented by the creation of a Graphical User Interface (GUI) that can facilitate the process of selecting the best model.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
CTA Form
Subject
Type Research Instrument
  Download (36KB)    Indexing metadata
Keywords: Poisson Inverse Gaussian Regression; Overdipersion; Pneumonia; GUI-R

Article Metrics:

  1. Akaike, H. (1978). A Bayesian Analysis of The Minimum AIC Procedure. Annals of the Institute of Statistical Mathematics, Part A Hal. 914
  2. Dean, C., Lawless, J. F. dan Willmot, G.E. (1989). A Mixed Poisson-inverse Gaussian Regression Model. The Canadian Journal of Statistics, Vol. 17, No. 2, hal. 171-181
  3. De Jong, P. dan Heller, G.Z. (2008), “Generalized Linear Model for Insurance Data”, 1st edition, Cambridge University, Press, New York
  4. Dinas Kesehatan Provinsi Jawa Timur. (2022). Profil Kesehatan Provinsi Jawa Timur 2021
  5. Karlis, D. dan Xekalaki, E. (2000). A Simulation Comparison of Several Procedures for Testing the Poisson Assumption. The Statistician. Vol. 49, No. 3, hal. 355-382
  6. Kementerian Kesehatan RI. (2021). Profil Kesehatan Indonesia 2021. Kementrian Kesehatan Republik Indonesia. https://pusdatin.kemkes.go.id/
  7. McCullagh, P., dan J. A. Nelder, (1989), Generalized Linear Models, 2nd Ed., Chapman and Hall, New York
  8. Myers. R. H., (1990). Classical and Modern Regression with Applicaton. Boston:
  9. PWS-KENT Publishing Company
  10. Nakaya, T., Fotheringham, A. S., Brunsdon, C., dan Charlton, M. (2005). Geographically weighted Poisson regression for disease association mapping.Statistics In medicine
  11. (17), 2695-271
  12. Said, M. (2010). Pengendalian Pneumonia Anak Balita dalam Rangka Pencapaian MDG4. Buletin Jendela Epidemilogi. 3: 16-21
  13. Sari, M.P. dan Cahyati, W. H. (2019). Tren Pneumonia Balita di Kota Semarang Tahun 2012-2018. Jurnal HIGEIA. 3(3): 407-416
  14. Smyth, G. K. (2002). Optimation. In Shaarawi, A.H.E., & Piegorsch, W.W. (Ed). Encyclopedia of Environmetrics, Vol. 3, (pp. 1481-1487), Chicester: John Wiley & Sons
  15. Riset Kesehatan Dasar (Riskesdas). (2013). Badan Penelitian dan Pengembangan Kesehatan Kementerian RI tahun 2013. Diakses 2 September 2022
  16. Walpole, R.E. (1995). Pengantar Metode Statistika. Ahli Bahasa: Ir. Bambang Sumantri, Jakarta: PT Gramedia Pustaka Utama
  17. Widiari, S, M. (2016). Penaksiran Parameter dan Statistik Uji dalam Model Regresi Poisson Inverse Gaussian (PIG). Tesis. Institut Teknologi Sepuluh Nopember
  18. Zha, L., Lord, D. dan Zou, Y. (2014), “ The Poisson Inverse Gaussian (PIG) Generalized Linear Regression Model for Analyzing Motor Vehicle Crash Data”. Journal of Transportation Safety and Security. DOI: 10.1080/19439962.2014.977502

Last update:

No citation recorded.

Last update:

No citation recorded.