slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
KLASIFIKASI MENGGUNAKAN METODE SUPPORT VECTOR MACHINE DAN RANDOM FOREST UNTUK DETEKSI AWAL RISIKO DIABETES MELITUS | Junus | Jurnal Gaussian skip to main content

KLASIFIKASI MENGGUNAKAN METODE SUPPORT VECTOR MACHINE DAN RANDOM FOREST UNTUK DETEKSI AWAL RISIKO DIABETES MELITUS

*Chea Zahrah Vaganza Junus  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tarno Tarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Puspita Kartikasari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Diabetes Mellitus is one of the four leading causes of death and therefore possible treatments are of crucial importance to the world leaders. Prevention and control of Diabetes Mellitus are often done by implementing a healthy lifestyle. Thus, both people with risk factors and people diagnosed with Diabetes Mellitus can control their disease in order to prevent complications or premature death.. For a proper education and standardized disease management the early detection of Diabetes Mellitus is necessary, which led to this conducted study about the classification of early detection of Diabetes Mellitus risk by utilizing the use of Machine Learning. The classification algorithms used are the Support Vector Machine and Random Forest where the performance analysis of the two methods will be seen in classifying Diabetes Mellitus data. The type of data used in this study is secondary data obtained from the official website of the UCI Machine Learning Repository consisting of 520 diabetes patient data taken from Sylhet Diabetic Hospital in Bangladesh with 16 independent variables and 1 dependent variable. The dependent variable categorizes the test result into positive and negative Diabetes Mellitus classes. The results of this study indicate that the Random Forest classification algorithm produces a better classification performance on Accuracy (98.08%), Recall (97.87%), Precision (98.92), and F1_Score (88.40%).
Fulltext View|Download
Keywords: Diabetes Melitus; Machine Learning; Classification; Support Vector Machine; Random Forest

Article Metrics:

  1. Bergstra, J. and Bengio, Y. (2012) ‘Random search for hyper-parameter optimization’, Journal of Machine Learning Research, 13, pp. 281–305
  2. Breiman, L. et al. (1993) Classification and Regression Trees. New York
  3. Breiman, L. (2001) ‘Random Forest’, Random Forest, 45, pp. 5–32. doi: 10.1023/A:1010933404324
  4. Nugroho, A. ., Wranto, A. . and Handoko, D. (2003) Support Vector Machine Teori dan Aplikasinya dalam Bioinformatika
  5. Prasetyo, E. (2012) ‘Data Mining Konsep dan Aplikasi Menggunakan Matlab’, in. Yogyakarta: Yogyakarta ANDI
  6. Santosa, B. (2007) Data Mining: Teknik Pemanfaatan Data untuk Keperluan Bisnis Teori & Aplikasi. Cet. 1. Yogyakarta: Yogyakarta Graha Ilmu , 2007
  7. Gunn, S. . (1998) Support Vector Machines for Classification and Regression. Southampton
  8. Kariadi (2009) Diabetes? Siapa Takut!! Panduan Lengkap untuk Diabetesi, Keluarganya, dan Profesional Medis. Bandung: Bandung Qanita

Last update:

No citation recorded.

Last update:

No citation recorded.