slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
PERBANDINGAN METODE HOLT WINTER’S EXPONENTIAL SMOOTHING DAN EXTREME LEARNING MACHINE UNTUK PERAMALAN JUMLAH BARANG YANG DIMUAT PADA PENERBANGAN DOMESTIK DI BANDARA UTAMA SOEKARNO HATTA | Marpaung | Jurnal Gaussian skip to main content

PERBANDINGAN METODE HOLT WINTER’S EXPONENTIAL SMOOTHING DAN EXTREME LEARNING MACHINE UNTUK PERAMALAN JUMLAH BARANG YANG DIMUAT PADA PENERBANGAN DOMESTIK DI BANDARA UTAMA SOEKARNO HATTA

*Kevin Togos Parningotan Marpaung  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Agus Rusgiyono  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Yuciana Wilandari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
The loading of goods carried out at the airport is an essential part of the transporting goods system. In this regard, it is necessary to have a prediction to make the right policy or to solve the problems that occur. Holt Winter's Exponential Smoothing, which one of the classic methods of analyzing time series data, and Extreme Learning Machine which is part of the artificial neural network method, are methods that can be used as a tool for forecasting problems. Holt Winter's Exponential Smoothing uses three times of smoothing on related data, which are level smoothing, trend smoothing, and season smoothing, while Extreme Learning Machine goes through three stages, which are normalization, training, and denormalization. In measuring the error rate in related forecasting, the symmetric Mean Absolute Percentage Error (sMAPE) value is used. The Holt Winter's Exponential Smoothing method Additive model produces a sMAPE value of 26.14%; while the Multiplicative model with the same method resulted in the sMAPE value of 25.69%. For the Extreme Learning Machine method, the sMAPE value is 49.85%. Based on the accuracy test using the sMAPE value, Holt Winter's Exponential Smoothing method Multiplicative model is the better method than Extreme Learning Machine
Fulltext View|Download
Keywords: Forecasting; Loaded Goods; Main Airports; Holt Winter's Exponential Smoothing; Extreme Learning Machine; sMAPE

Article Metrics:

  1. Arisoma, D. S., Supangat, & Narulita, L. F. 2019. System Design and Development of Financial Product Sales Forecasting with exponentially weighted moving average and exponential smoothing method. Uii-Icabe 2019, 2
  2. Chang, P.C., Wang, & Liu, C.H. 2007. The Development of a Weighted Evolving Fuzzy Neural Network for PCB Sales Forecasting. Journal Expert System with Applications. 32(1): 86-96
  3. Chen, C. Twycross, J. & Garibaldi., J.M. 2017. A New Accuracy Measure Based on Bounded Relative Error for Time Series Forecasting. PLOS ONE 12(3)
  4. Giusti, A., Widodo, A. W., & Adinugroho, S. 2018. Prediksi Penjualan Mi Menggunakan Metode Extreme Learning Machine (ELM) di Kober Mie Setan Cabang Soekarno Hatta. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol. 2, No. 8, 2974
  5. Haykin, S. 2009. Neural Networks and Learning Machines, Third Edition. United States of America: Pearson Prentice Hall. All rights reserved, ISBN- 13:978-0-13-147139-9, ISBN-10: 0-13-147139-2. pp. 10-24
  6. Huang Guang-Bin, Zhu Qin-Yu, & Siew Chee-Kheong, 2006, Extreme learning machine: Theory and applications. Neurocomputing 70 (2006), Elsevier, Page 489-501
  7. Ishak, A. 2010. Manajemen Operasi. Yogyakarta: Graha Ilmu
  8. Mahkya, D. A., Yasin, H., Mukid, M. A. 2014. Aplikasi Metode Golden Section untuk Optimasi Parameter pada Metode Exponenstal Smoothing. Jurnal Gaussian Vol. 3, No. 4: Hal. 605-614
  9. Makridakis, S. 1995. Metode dan Aplikasi Peramalan. Jakarta: Penerbit Erlangga
  10. Montgomery, D. C., Jennings, C. L., & Kulahci, M. 2015, Introduction to Time Series Analysis and Forecasting. Hoboken New Jersey: John Wiley & Sons
  11. Nasution, D. A., Khotimah, H. H., & Chamidah, N. 2019. Perbandingan Normalisasi Data untuk Mengklasifikasi Wine Menggunakan Algoritma K-NN. CESS (Journal of Computer Engineering System and Science), 78-82
  12. Wei, W.S. 2006. Time Series Analysis: Univariate and Multivariate Methods, 2nd Edition. USA: Addison Wesley

Last update:

No citation recorded.

Last update:

No citation recorded.