skip to main content

PEMODELAN INDEKS PEMBANGUNAN MANUSIA DI JAWA TENGAH MENGGUNAKAN METODE REGRESI RIDGE DAN REGRESI STEPWISE

*Erna Sulistianingsih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Suparti Suparti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Dwi Ispriyanti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
The Human Development Index (HDI) is an important indicator in measuring the success of national development. Central Java with a high population can be considered as an obstacle and a driver of development. To find out the factors that affect HDI, it is necessary to make a model. One of the statistical methods that can be used is multiple linear regression analysis. However, in modeling multiple linear regression there are assumptions that must be met, namely linearity, normality, homoscedasticity, non-autocorrelation, and non-multicollinearity. If the non-multicollinearity assumption is not met, then another alternative is needed to estimate the regression parameters. Several methods that can be used are ridge regression and stepwise regression methods. The best model selection is done by looking at the smallest Mean Square Error (MSE) value. In this study, ridge and stepwise regression were applied to Central Java HDI data in 2021 and the factors that influence it, namely life expectancy at birth, expected years of schooling, average length of schooling, per capita expenditure, percentage of poor people, and unemployment open. Based on the Variance Inflation Factor (VIF) value of more than 10, it can be concluded that there is a multicollinearity violation. Modeling with stepwise regression produces the best model, with the smallest MSE value. The R square model value of 0,99 indicates that the model is included in the criteria for a strong model.
Fulltext View|Download
Keywords: HDI; Multicollinearity; Ridge Regression; Stepwise Regression

Article Metrics:

  1. Arrasyid, A. H., Ispriyanti, D., & Hoyyi, A. (2021). Metode Modified Jackknife Ridge Regression Dalam Penanganan Multikolinieritas (Studi Kasus Indeks Pembangunan Manusia Di Jawa Tengah). Jurnal Gaussian, 10(1), 104–113
  2. BPS. (2014). Indeks Pembangunan Manusia. Badan Pusat Statistik. https://www.bps.go.id/subject/26/indeks-pembangunan-manusia.html#subjekViewTab1
  3. Ghozali, I. (2016). Aplikasi Analisis Multivariete Dengan Program IBM SPSS 23 (8th ed.). Semarang: Universitas Diponegoro
  4. Kurniawan, R., & Yuniarto, B. (2016). Analisis Regresi Dasar dan Penerapannya dengan R. Jakarta: Kencana
  5. Montgomery, D. C., & Peck, E. A. (1991). Introduction to Linear Regression Analysis (2nd ed.). New York: John Wiley & Sons
  6. Mulyasari, R., Nugroho, S., & Rizal, J. (2015). Regresi Ridge untuk mengatasi Multikolinearitas. E-Journal Statistika, 1, 1–12
  7. Pujilestari, S., Dwidayati, N., & Sugiman. (2017). Pemilihan Model Regresi Linear Berganda Terbaik pada Kasus Multikolinearitas Berdasarkan Metode Principal Component Analysis (PCA) dan Metode Stepwise. Unnes Journal of Mathematics, 6(1)
  8. Putri, A. P. (2011). Penggunaan Metode Ridge Trace Dan Variance Inflation Factors (Vif) Pada Regresi Ridge. E-Journal Universitas Negeri Yogyakarta
  9. Rashwan, N. I., & El-Dereny, M. (2011). Solving Multicollinearity Problem Using Ridge Regression Models. Int. J. Contemp. Math. Sciences, 6(12), 585–600
  10. Wasilaine, T. L., Talakua, M. W., & Lesnussa, Y. A. (2014). Model Regresi Ridge untuk Mengatasi Model Regresi Linier Berganda yang Mengandung Multikolinieritas (Studi Kasus: Data Pertumbuhan Bayi di Kelurahan Namaelo RT 001, Kota Masohi)

Last update:

No citation recorded.

Last update:

No citation recorded.