BibTex Citation Data :
@article{J.Gauss37094, author = {Tita Putri and Tatik Widiharih and Rukun Santoso}, title = {PENERAPAN TUNING HYPERPARAMETER RANDOMSEARCHCV PADA ADAPTIVE BOOSTING UNTUK PREDIKSI KELANGSUNGAN HIDUP PASIEN GAGAL JANTUNG}, journal = {Jurnal Gaussian}, volume = {11}, number = {3}, year = {2023}, keywords = {Heart Failure; Tuning Hyperparameter; AdaBoost; RandomSearchCV}, abstract = {Heart failure is the number one cause of death every year. Heart failure is a pathological condition characterized by abnormalities in heart function, which results in the failure of blood to be pumped to supply metabolic needs of tissues. The application of data mining and computational techniques to medical records can be an effective tool to predict each patient's survival who has heart failure symptoms. Data mining is a process of gathering important information from big data. The collection of important information is carried out through several processes, including statistical methods, mathematics, and artificial intelligence technology. The AdaBoost method is one of the supervised algorithms in data mining that is widely applied to make classification models. Hyperparameter Optimization is selecting the optimal set of hyperparameters for a learning algorithm. AdaBoost has hyperparameters requiring a classification process set, namely learning rate and n_estimators. RandomSearchCV is a random combination method of selected hyperparameters used to train the model. This research uses heart failure patient data collected at the Faisalabad Institute of Cardiology and at the Allied Hospital in Faisalabad (Punjab, Pakistan) from April to December 2015. The research uses learning rate: [-2.2] (log scale), n_estimators start from 10 to 776, and Kfold=5 and produces the best hyperparameters in learning rate=0.01 and n_estimators=443 with an accuracy value of 0.85 and AUC value of 0.897.}, issn = {2339-2541}, pages = {397--406} doi = {10.14710/j.gauss.11.3.397-406}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/37094} }
Refworks Citation Data :
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics