skip to main content

PENERAPAN TEXT MINING DAN FUZZY C-MEANS CLUSTERING UNTUK IDENTIFIKASI KELUHAN UTAMA PELANGGAN PDAM TIRTA MOEDAL KOTA SEMARANG

*Genisia Pramestiloka Aulia  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tatik Widiharih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Iut Tri Utami  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Customer complaints can be handled effectively by identifying the main complaints that cause customers to be dissatisfied. Many customer complaints cause difficulty for PDAM Tirta Moedal Semarang to identify problems, which are frequently the primary complaints of customers. Grouping complaints that have similarities using Fuzzy C-Means Clustering will make the identification of the main customer complaints easier. Fuzzy C-Means uses fuzzy models, allows data to be a member of all formed clusters with membership level between 0-1. Fuzzy C-Means Clustering can also introduce more flexible patterns and show results in more accurate cluster placement. Text mining is used to convert textual data into numerical data. Customer complaints received through all contacts in PDAM Tirta Moedal Semarang from October–December 2021 were used as data. The clustering process forms 6 clusters,with the number of clusters tried being 3, 4, 5, and 6, which are seen by the smallest Xie-Beni Index. The main complaints from PDAM Tirta Moedal Semarang customer that seen through Word cloud in each cluster are that the water stops running in clusters 1 and 6 and the pipes leak in clusters 4 and 5. Complaints in clusters 2 and 3 are complaints related to water meters and water flow.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Untitled
Subject
Type Other
  Download (290KB)    Indexing metadata
Keywords: Text Mining; Fuzzy C-Means Clustering; Xie-Beni Index; Word cloud.

Article Metrics:

  1. Ghoniyah, N. 2012. Perilaku Komplain dan Pengaruhnya Terhadap Kepuasaan dan Loyalitas Pelanggan Jasa. Dharma Ekonomi, Vol. 19, No.35, Hal: 1-12
  2. Klawonn, F. dan Höppner, F. 2003. What is Fuzzy about Fuzzy Clustering? Understanding and Improving the Concept of the Fuzzier. Internatioal Symposium on Intelligent Data Analysis, Hal: 254-264
  3. Mulekar, M.S. dan Brown, C.S. 2017. Distace and Similarity Measures in Encyclopedai of Social Network Analysis and Mining. New York: Springer
  4. Muranishi, M., Honda, K., dan Notsu, A. 2014. Xie-Beni Type Fuzzy Cluster Validation in Fuzzy Co-clustering of Documents and Keywords. Soft Computing in Artificial Intelligence, Vol. 270, Hal: 29-38
  5. Nayak, J., Naik, B., dan Behera, H.S. 2015. Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014. Computational Intelligence in Data Mining, Vol. 2, Hal: 133-149
  6. Perumda Air Minum Tirta Moedal Kota Semarang. 2019. Sejarah PDAM. https://www.pdamkotasmg.co.id/page/sejarah. Diakses pada tanggal 18 April 2022
  7. Perumda Air Minum Tirta Moedal Kota Semarang. 2021. Beranda. https://www.pdamkotasmg.co.id/. Diakses pada tanggal 20 April 2022
  8. Prasetyo, E. 2012. Data Mining Konsep dan Aplikasi Menggunakan MATLAB. Yogyakarta. Penerbit Andi
  9. Prayoga, M. A. 2020. Jumlah Aduan Pelanggan PDAM Meningkat 150 Orang/hari. Suara Merdeka. https://www.suaramerdeka.com/semarang-raya/pr-04122840/jumlah-aduan-pelanggan-pdam-meningkat-150-oranghari?page=1. Diakses pada tanggal 18 April 2022
  10. Putri, E. K. dan Setiadi, T. 2014. Penerapan Text Mining pada Sistem Klasifikasi Email Spam Menggunakan Naïve Bayes. Jurnal Sarjana Teknik Informatika, Vol. 2, No. 3, Hal: 73-83
  11. Rahakbauw, D.I., Ilwaru, V. Y., dan Hahury, M.H. 2017. Implementasi Fuzzy C-Means Clustering dalam Penentuan Beasiswa. Jurnal Ilmu Matematika dan Terapan. Vol. 11, No. 1, Hal: 1-11
  12. Tanatavikorn, H. dan Yamashita, Y. 2015. Improving Data Reliability for Process Monitoring with Fuzzy Outlier Detection. Computer Aided Chemical Engineering, Vol. 37, Hal: 1595-1600
  13. Upendra, B., dan Babu, A.S. 2016. KNN TFIDF Based Named Entity Recognition. International Journal of Scientific Development and Research (USDR), Vol. 1, No.12, Hal: 35-39
  14. Vijaymeena, M.K. dan Kavitha, K. 2016. A Survey on Similiarity Measures in Text Mining. Machine Learning and Applications, Vol. 3, No.1, Hal: 19-28
  15. Vijayarani, S. dan Nithya, N. 2015. Efficient Machine Learning Classifiers for Automatic Information Classification. International Journal of Modern Trends in Engineering and Research, Vol. 2, Hal: 685-694

Last update:

No citation recorded.

Last update:

No citation recorded.