skip to main content

PEMODELAN HARGA SAHAM PERUSAHAAN PROPERTI DAN REAL ESTATE MENGGUNAKAN REGRESI LONGITUDINAL SPLINE TRUNCATED DILENGKAPI GUI R

*Nurina Salma Alfiyyah  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Suparti Suparti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Sugito Sugito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Stocks are one of the most popular financial instruments traded in the capital market. One of stock prices fluctuate up and down due to the influence of several factors, one of which is inflation. Stocks in the property and real estate sectors are important indicators to determine the level of a country economy. Data on several stock prices is one case of longitudinal data in economic field. The data is divided into 2 parts, namely in sample data from January 2016 to October 2020 and out sample data from November 2020 to December 2021. In this study, longitudinal stock price data is modeling using nonparametric spline truncated. The best spline truncated model is determined by the order and the optimal number of knot points based on the minimum Generalized Cross Validation value. Spline truncated nonparametric regression modeling for longitudinal data in this study is equipped with Graphical User Interface (GUI) that can facilitate the data processing. The results of the analysis show that the best longitudinal spline truncated regression model obtained on 2nd order with 5 knot points. 95.04% value of  indicates the model is a strong model. In the evaluation of the best model, the MAPE data out sample value is 16.45%. It indicates the model has good forecasting ability.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (27KB)    Indexing metadata
Keywords: Spline Truncated, Longitudinal Data; Stocks; Inflation; GCV; GUI.

Article Metrics:

  1. Budiantara, I. N. (2009). Spline dalam Regresi Nonparametrik dan Semiparametrik: Sebuah Pemodelan Statistika Masa Kini dan Masa Mendatang. Pidato Pengukuhan Untuk Jabatan Guru Besar Pada Jurusan Statistika, Institut Teknologi Sepuluh Nopember (ITS) Surabaya
  2. Chang, P. C., Wang, Y. W., & Liu, C. H. (2007). The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, 32(1), 86–96. https://doi.org/10.1016/j.eswa.2005.11.021
  3. Chin, W. W. (1998). The Partial Least Squares Approach to Structural Formula Modeling. Advances in Hospitality and Leisure, 295(2), 295–336
  4. Eubank, R. L. (1999). Nonparametric Regression and Spline Smoothing Second Edition. Departement of Statistics Southern Methodist Dallas University
  5. Hadi, N. (2013). Pasar Modal : Acuan Teoritis dan Praktis Investasi di Instrumen Keuangan Pasar Modal. Graha Ilmu
  6. Hardle, W., & Linton, O. (1994). Applied Nonparametric Methods. Handbook of Econometrics, IV(26), 2295–2339. http://www.sciencedirect.com/science/article/pii/S1573441205800078
  7. Hendrian, J. (2021). Pemodelan harga emas dunia menggunakan metode nonparametrik polinomial lokal dilengkapi gui r
  8. Poerwanto, B., & Budiantara, I. N. (2014). Estimasi Kurva Regresi Semiparametrik Spline untuk Data Longitudinal. 273–278
  9. Tandelilin, E. (2010). Portfolio dan Investasi: Teori dan Aplikasi. Kanisius
  10. Tirta, I. M. (2014). Pengembangan E-Modul Statistika Terintegrasi dan Dinamik dengan R-shiny dan mathJax. Prosiding Seminar Nasional Matematika, Universitas Jember, 223–232
  11. Wijaya, H. P. (2015). Pengaruh Perubahan Suku Bunga, Inflasi, Perubahan Nilai Tukar, Dan Perubahan Produk Domestik Bruto Terhadap Perubahan Indeks Harga Saham Sektor Properti Dan Real Estate Di Bursa Efek Indonesia (Periode Pengamatan Tahun 2007-2013). 1–11
  12. Wu, H., & Zhang, J. T. (2006). Nonparametric Regression Methods for Longitudinal Data Analysis: Mixed-Effects Modeling Approaches. In John Wiley and Sons, Inc (Issue March). https://doi.org/10.1002/0470009675

Last update:

No citation recorded.

Last update:

No citation recorded.