skip to main content

PEMODELAN INDEKS HARGA PERDAGANGAN BESAR (IHPB) SEKTOR EKSPOR MENGGUNAKAN ARFIMA-GARCH

*Gandhes Linggar Winanti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Dwi Ispriyanti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Sugito Sugito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Indonesia's price index serves as a barometer for the nation's economic condition. One of the Indonesia’s price index is Wholesale Price Index (WPI). WPI is a price index that tracks the average change in wholesale prices over time. Time series analysis can be used for forecasting because WPI is one of the time series data. WPI is long memory, which is a condition in which data from different time periods have a high link despite being separated by a large amount of time. The Autoregressive Fractional Integrated Moving Average (ARFIMA) model can be used to overcome this feature when modeling time series data. The assumption of constant error variance is not fulfilled in the IHPB data analysis, indicating that the data is heteroscedastic. The GARCH (Generalized Auto Regressive Conditional Heteroscedasticity) model is one of the models used to overcome heteroscedasticity. The data used is the export sector of WPI from January 2003 to June 2021. The best model for forecasting WPI is ARFIMA(1,b,2) – GARCH(1,1) with b=0,7345333,  and MAPE value is 3,150875%.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
CTA Form
Subject
Type Research Instrument
  Download (28KB)    Indexing metadata
Keywords: WPI; Forecast; Long Memory; ARFIMA; GARCH.

Article Metrics:

  1. Bollerslev, T., 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics Vol. 31, No.3, Hal: 307-327
  2. Box, G.E, Jenkins, G. M., & Reinsel, G. 1994. Time Series Analysis: Forecasting and Control, 3rd Edition. Prentice Hall
  3. Badan Pusat Statistika. 2020. Indeks Harga Perdagangan Besar. Tersedia: https://www.bps.go.id/subject/20/harga-perdagangan-besar.html (diakses pada tanggal 13 Maret 2020)
  4. Cahyandari, R., & Erviana, R. 2015. Peramalan Kurs Jual Uang Kertas Mata Uang Singapore Dollar (SGD) terhadap Rupiah Menggunakan Model ARFIMA (Autoregressive Fractionally Integrated Moving Average). Kubik Vol. 1, No. 1
  5. Caraka, R.E. et al. 2016. Model Long Memory dalam Prediksi Suhu. Prosiding Seminar Hari Meteorologi Dunia, Tangerang Selatan
  6. Enders, W., 1995. Applied Econometric Time Series. New York: John Wiley&Sons. Inc
  7. Engle, R.F., 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica: Journal of the Econometric society, Hal: 987-1007
  8. Hosking,J. R. M. 1981. Fractional Differencing. Biometrika Vol.68, Hal: 165-176
  9. Idris, S., Goejantoro, R., & Nasution, Y.N. 2014. Pemodelan dan Peramalan Indeks Harga Perdagangan Besar (IHPB) dengan Menggunakan ARFIMA. Jurnal Eksponensial Vol. 5, No. 2, Hal: 137-146
  10. Makridakis, S., Wheelwright, S.C., & McGree, V.E. 1999. Metode dan Aplikasi Peramalan. Edisi kedua. Jilid 1. Jakarta : Binarupa Aksara
  11. Paridi. 2019. Perbandingan Metode ARIMA(Box Jenkins), ARFIMA, Regresi Spektral dan SSA dalam Peramalan Jumlah Kasus Demam Berdarah Dengue di Rumah Sakit Hasan Sadikin Bandung. Jurnal Ilmu Sosial dan Ilmu Politik Vol. 2, No. 1 : Hal. 243-258
  12. Qian, B. & Rasheed, K. 2004. Hurst Exponent and Financial Market Predictibility. Proceedings of 2nd IASTED International Conference on Financial Engineering and Applications. Cambridge, MA, USA
  13. Rosadi, D., 2011. Analisis Ekonometrika & Runtun Waktu Terapan dengan R. Yogyakarta : Andi Publisher
  14. Tsay, R.S., 2002. Analysis of Financial Time Series. Canada : John Wiley & Sons Inc
  15. Wahyudi, S.T. 2017. Statistika Ekonomi Konsep, Teori dan Penerapan. Malang: UB Press
  16. Wei, W. W. S. 2006. Time Series Analysis, Univariate and Multivariate Methods. Canada: Addison Wesley Publishing Company

Last update:

No citation recorded.

Last update:

No citation recorded.

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor