skip to main content

ANALISIS SISTEM PELAYANAN GARDU TOL OTOMATIS GERBANG TOL GAYAMSARI MENGGUNAKAN METODE BAYESIAN

*Windusiwi Asih Akbari  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Sugito Sugito  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Suparti Suparti  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Transportation is important things to support mobility. The high level of mobility is in line with the growth of vehicles which has increased causing congestion on roads. Highways are one of the government’s efforts to reduce congestion. Gayamsari Toll Gate is one of the toll gates in Semarang City that experiencing the phenomenon of queuing when paying tolls. This study aims to determine the operation of the service system by obtaining a queuing model and system performance measures from the distribution of arrivals and services. Bayesian method is used to determine the distribution of arrivals and services by finding the posterior distribution. The combination of the sample likelihood function and the prior distribution is known as Bayesian method. The prior distribution used is the previous research data which produces a negative binomial distribution. The likelihood function of the arrival sample in this study is discrete uniform and the likelihood function of the service sample produces a negative binomial distribution. The results are the queuing system model is (Beta/Beta/5): (GD/∞/∞). Based on the results of the queue simulation, we can assume that the service system is optimal.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
CTA Form
Subject
Type Research Instrument
  Download (16KB)    Indexing metadata
Keywords: Queue; Gayamsari Toll Gate; Bayesian Method; Beta; Queue Simulation; System Performance Measure

Article Metrics:

  1. Bain, L.J. and Engelhardt, M. 1992. Introduction Probability and Mathematical Statistics. Second Edition. California: Duxbury Press
  2. Box, G.E.P. and Tiao, G.C. 1973. Bayesian Inference In Statistical Analysis. Philippones: Addison-Wesley Publishing Company, Inc
  3. Bronson, R. 1991. Operations Research Teori dan Soal-Soal. Jakarta: Penerbit Erlangga
  4. Daniel, W.W. 1989. Statistika Nonparametrik Terapan (Terjemahan). Jakarta: Gramedia
  5. Gross, D. et al. 2018. Fundamental of Queueing Theory Fifth Edition. New Jersey: John Wiley & Sons, Inc
  6. Hanikmah, Y. 2019. Penerapan Teori Antrean Untuk Analisis Kinerja Sistem Pelayanan Di Gerbang Tol Gayamsari. Jurnal Statistika, 7(2), pp. 84–90
  7. Montgomery, D.C. and Runger, G.C. 2018. Applied Statistics and Probability for Engineers Seventh Edition. New York: John Wiley & Sons, Inc
  8. Jasa Marga. 2019. Sekilas Jasa Marga. https://www.jasamarga.com/public/id/infoperusahaan/ProfilPerusahaan/Overview.aspx. Diakses: 25 Juli 2021
  9. Risdiyanto. 2014. Rekayasa dan Manajemen Lalu Lintas: Teori dan Aplikasi. Yogyakarta: Leutika Prio
  10. Soejati, Z. and Subanar. 1988. Inferensi Bayesian. Jakarta: Karunika
  11. Suprayitno, B. 2012. Privatisasi Jalan Tol Sebagai Solusi Dalam Mempercepat Terwujudnya Infrastruktur Jalan Tol Yang Memadai Di Indonesia. Jurnal Economia, 8, pp. 65–77
  12. Taha, H.A. 2017. Operation Research : an Introduction Ninth Edition. Harlow: Pearson Prentice Hall
  13. Walpole, R.E. et al. 2012. Probability & Statistics for Engineers & Scientists Ninth Edition. New Jersey: Pearson Prentice Hall

Last update:

No citation recorded.

Last update:

No citation recorded.