BibTex Citation Data :
@article{J.Gauss35581, author = {Wahyu Rosaamalia and Rukun Santoso and Suparti Suparti}, title = {PENERAPAN ALGORITMA BACKPROPAGATION DAN OPTIMASI CONJUGATE GRADIENT UNTUK KLASIFIKASI HASIL TES LABORATORIUM}, journal = {Jurnal Gaussian}, volume = {11}, number = {4}, year = {2023}, keywords = {Backpropagation; Conjugate Gradient; Blood; Classification}, abstract = { A blood test is generally used to evaluate the condition of the blood and its components, conduct screening, and aid diagnosis. Blood tests in the laboratory are commonly used to deliberate whether a patient needs to be hospitalized or treated as an outpatient. Backpropagation algorithm was selected for its ability to solve complex problems. Conjugate gradient optimization is used because it facilitates faster solution search. An electronic medical record containing the results of patient laboratory examinations was obtained from Mendeley. The data was divided into training and testing with a 95:5 ratio, which was discovered to be the best ratio from the experiments. The best architecture was achieved by a combination of 10 neurons in the input layer, 16 neurons in the first hidden layer, 2 neurons in the second hidden layer, and a neuron in the output layer. Purelin is used as the activation function for both the first hidden and output layers, whereas the binary sigmoid is used for the second hidden layer. The analysis revealed that for 100 bootstraps in training data, the network worked with an average accuracy of 60.17% and a recall of 99.77%, while the accuracy results in testing data were 69.23%. }, issn = {2339-2541}, pages = {506--511} doi = {10.14710/j.gauss.11.4.506-511}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/35581} }
Refworks Citation Data :
A blood test is generally used to evaluate the condition of the blood and its components, conduct screening, and aid diagnosis. Blood tests in the laboratory are commonly used to deliberate whether a patient needs to be hospitalized or treated as an outpatient. Backpropagation algorithm was selected for its ability to solve complex problems. Conjugate gradient optimization is used because it facilitates faster solution search. An electronic medical record containing the results of patient laboratory examinations was obtained from Mendeley. The data was divided into training and testing with a 95:5 ratio, which was discovered to be the best ratio from the experiments. The best architecture was achieved by a combination of 10 neurons in the input layer, 16 neurons in the first hidden layer, 2 neurons in the second hidden layer, and a neuron in the output layer. Purelin is used as the activation function for both the first hidden and output layers, whereas the binary sigmoid is used for the second hidden layer. The analysis revealed that for 100 bootstraps in training data, the network worked with an average accuracy of 60.17% and a recall of 99.77%, while the accuracy results in testing data were 69.23%.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics