skip to main content

PENERAPAN ALGORITMA BACKPROPAGATION DAN OPTIMASI CONJUGATE GRADIENT UNTUK KLASIFIKASI HASIL TES LABORATORIUM

*Wahyu Tiara Rosaamalia  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Rukun Santoso  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Suparti Suparti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

A blood test is generally used to evaluate the condition of the blood and its components, conduct screening, and aid diagnosis. Blood tests in the laboratory are commonly used to deliberate whether a patient needs to be hospitalized or treated as an outpatient. Backpropagation algorithm was selected for its ability to solve complex problems. Conjugate gradient optimization is used because it facilitates faster solution search. An electronic medical record containing the results of patient laboratory examinations was obtained from Mendeley. The data was divided into training and testing with a 95:5 ratio, which was discovered to be the best ratio from the experiments. The best architecture was achieved by a combination of 10 neurons in the input layer, 16 neurons in the first hidden layer, 2 neurons in the second hidden layer, and a neuron in the output layer. Purelin is used as the activation function for both the first hidden and output layers, whereas the binary sigmoid is used for the second hidden layer. The analysis revealed that for 100 bootstraps in training data, the network worked with an average accuracy of 60.17% and a recall of 99.77%, while the accuracy results in testing data were 69.23%.

Fulltext View|Download
Keywords: Backpropagation; Conjugate Gradient; Blood; Classification

Article Metrics:

  1. DiCiccio, T. J. & Efron, B., 1996. Bootstrap Confidence Intervals. Statistical Science, 11(3), pp. 189-228. https://www.jstor.org/stable/2246110
  2. Efron, B. & Tibshirani, R. J., 1993. An Introduction to The Bootstrap. Berlin: Springer Science+Business Media Dordrecht
  3. Fausett, L., 1994. Fundamentals of Neural Networks: Architectures, Algorihms, and Application. New Jersey: Prentice-Hall
  4. Kusumadewi, S., 2004. Membangun Jaringan Syaraf Tiruan: Menggunakan Matlab dan Excel Link. 1 penyunt. Yogyakarta: Graha Ilmu
  5. Rosida, A. & Hendriyono, F., 2015. Nilai Rujukan Hematologi Orang Dewasa Normal di RSUD Ulin Banjarmasin. Berkala Kedokteran, 11(1), Hal. 101-109. http://dx.doi.org/10.20527/jbk.v11i1.190
  6. Utomo, D. P. & Mesran, 2020. Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut pada Dataset Penyakit Jantung. Media Informatika Budidarma, 4(2), Hal. 437-444. http://dx.doi.org/10.30865/mib.v4i2.2080
  7. Wanto, A., 2017. Optimasi Prediksi Dengan Algoritma Backpropagation Dan Conjugate Gradient Beale-Powell Restarts. Jurnal Nasional Teknologi dan Sistem Informasi, 3(3), Hal. 370-380. https://doi.org/10.25077/TEKNOSI.v3i3.2017.370-380
  8. Warsito, B., 2009. Kapita Selekta Neural Network. Semarang: BP Universitas Diponegoro
  9. Wisesty, U. N., Adiwijaya & B.W, T. A., 2010. Algoritma Conjugate Gradient Polak Ribiere untuk Peningkatan Performansi Backpropagation Pada Sistem Prediksi Temperatur Udara. Penelitian dan Pengembangan Telekomunikasi, 15(2). http://digilib.mercubuana.ac.id/manager/t!@file_artikel_abstrak/Isi_Artikel_600618627378.pdf
  10. Yuvaraj, N. et al., 2021. Nature-Inspired-Based Approach for Automated Cyberbullying Classification on Multimedia Social Networking. Hindawi Mathematical Problems in Engineering, Volume 2021. https://doi.org/10.1155/2021/6644652

Last update:

No citation recorded.

Last update:

No citation recorded.