skip to main content

PREDIKSI TINGKAT TEMPERATUR KOTA SEMARANG MENGGUNAKAN METODE LONG SHORT-TERM MEMORY (LSTM)

*Rahmatul Akbar  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Rukun Santoso  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Budi Warsito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Temperature is one of the most important attributes of climate, temperature affects life in many different ways such as in agriculture, aviation, energy, and life in general. Temperature prediction is needed to make the right step to prevent the negative impact of climate change. Long Short-Term Memory (LSTM) is the method that can predict time series data, using the unique design of neural networks, LSTM can help to prevent vanishing gradient from happening which allows LSTM model to use more data from the past to predict the future. Hyperparameters like LSTM unit, epochs, and batch size are used to make the best model, the best model is the one with the lowest loss function. This research used climate data from 1 January 2019 until 31 December 2021 consist of 1096 data in total. The best prediction in this research is made by the model with 70% training data, 0,009 learning rate, 128 LSTM unit, 16 batch size, and 100 epochs with the lowest loss function of 0,013, this model gives MAPE value of 1,896016% and RMSE value of 0,725.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
PREDIKSI TINGKAT TEMPERATUR KOTA SEMARANG MENGGUNAKAN METODE LONG SHORT-TERM MEMORY (LSTM)
Subject
Type Research Instrument
  Download (172KB)    Indexing metadata
Keywords: Temperature; Long Short-Term Memory; Hyperparameters

Article Metrics:

  1. BMKG. 2015. Data Online Pusat Database-BMKG. Diakses pada 11 Oktober 2021, dari http://dataonline.bmkg.go.id/akses_data
  2. Hardesty, L. 2017. Explained: Neural Networks Ballyhooed Artificial-Intelligence Technique Known as “Deep Learning” Revives 70-Year-Old Idea. Diakses pada 21 Januari 2022, dari https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
  3. Khumaidi, A., Raafi'udin, R., & Solihin, I. (2020). Pengujian Algoritma Long Short-Term Memory untuk Prediksi Kualitas Udara dan Suhu Kota Bandung. Jurnal Telematika, 15(1), 13-18. Retrieved from https://journal.ithb.ac.id/telematika/article/view/340
  4. Larasati, K. D. and Primandari, A. H. 2021. Forecasting Bitcoin Price Based on Blockchain Information Using Long-Short Term Method, Parameter: Journal of Statistics, 1(1), pp. 1-6. doi: 10.22487/27765660.2021.v1.i1.15389
  5. Olah, C. 2015. Understanding LSTM Networks. Diakses pada 20 November 2021, dari https://colah.github.io/posts/2015-08-Understanding-LSTMs/
  6. Purnomo, H., Suyono, H., and Hasanah, R. N., 2021. Peramalan Beban Jangka Pendek Sistem Kelistrikan Kota Batu Menggunakan Deep Learning Long Short-Term Memory. Transmisi: Jurnal Ilmiah Teknik Elektro, [Online] Volume 23(3), pp. 97-102. https://doi.org/10.14710/transmisi.23.3.97-102
  7. Rahim dkk. 2016. Karakteristik Data Temperatur Udara dan Kenyamanan Termal di Makasar. Temu Ilmiah, 075-078
  8. Sahishanu. 2021. LSTM – Derivation of Back propagation through time. Diakses pada 5 Januari 2021, dari https://www.geeksforgeeks.org/lstm-derivation-of-back-propagation-through-time/
  9. Supari. 2017. Observed changes in exstream temperature and precipitation over indonesia International Journal of Climatology. 37 (4), 1979–1997
  10. Sutanto, T. 2021. Pengenalan Long Short-Term Memory (LSTM). Diakses pada 10 Februari 2022, dari https://tau-data.id/lstm/
  11. Tjasyono, Bayong. 2004. Klimatologi. ITB
  12. Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P. and Gao, R.X. 2019. Deep Learning and Its Applications to Machine Health Monitoring. Mechanical Systems and Signal Processing, Vol. 115, doi: 10.1016/j.ymssp.2018.05.050

Last update:

No citation recorded.

Last update:

No citation recorded.