skip to main content

ANALISIS SENTIMEN ULASAN APLIKASI TIKTOK DI GOOGLE PLAY MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM) DAN ASOSIASI

*Sola Fide  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Suparti Suparti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Sudarno Sudarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Corona virus pandemic requires people to do activities from home so the number of internet usage in Indonesia has increased because information is carried out through social media. One of the popular social media in Indonesia is TikTok. However, the Tiktok’s popularity cannot be separated from the footsteps of TikTok in Indonesia which was blocked by government for committing many violations. Each application allows users to provide a review about the application. To find out the users TikTok’s sentiment, sentiment analysis was carried out to classify reviews into positive and negative sentiments. Classification is carried out using the Support Vector Machine (SVM) with kernel Radial Basis Function (RBF) method which is more effective classification algorithm and kernel function, seen from previous studies. The parameters used in the SVM gamma default 0.0004255 and the Cost (C) parameter experiment used is 0,01; 0,1; 1; 10; 100; 1000. The  results can provide information that can be retrieved using the association method. The steps are scrapping data, data preprocessing, sentiment scoring, TF-IDF weighting, classifying using the SVM RBF kernel method and text association. Evaluation of the model using a confusion matrix with the value of accuracy and kappa. The greater the value of accuracy and kappa, the better the performance of the classification model. The review classification resulted in the best accuracy rate of 90.62% and the best kappa of 81.24% which means that it includes an almost perfect classification result. Based on the data association, positive reviews are given because users like and are comfortable with the current version of TikTok which contains funny videos on fyp. Meanwhile, negative reviews were given because the user failed to register and his account was blocked, so the user asked TikTok to continue to make improvements.

Fulltext View|Download
Keywords: TikTok, sentiment analysis; Suport Vector Machine (SVM); TF-IDF; accuracy; kappa; association

Article Metrics:

  1. Ayani, D. D., Pratiwi, H. S.,dan Muhardi, H. 2019. Implementasi Web Scraping untuk Pengambilan Data pada Situs Marketplace. Sistem dan Teknologi Informasi Vol 7, No 4, Hal. 257-262
  2. Christian, H., Agus, M. P., dan Suhartono, D. 2016. Single Document Automatic Text Summarization Using Term Frequency-Inverse Document Frequency(TF-IDF). ComTech,Vol.7, Hal.285-294
  3. CNN, 2018. Penuhi 9 dari 10 Syarat Kominfo, Blokir TikTok Dibuka. https://www.cnnindonesia.com/teknologi/20180710162606-185-313025/penuhi-9-dari-10-syarat-kominfo-blokir-tik-tok-dibuka. Diakses: 2 September 2020.: s.n
  4. Fatmawati dan Affandes, M.. 2017. Klasifikasi Keluhan Menggunakan Metode Support Vector Machine (SVM) (Studi Kasus : Akun Facebook Group iRaise Helpdesk). Jurnal CoreIT, Vol.3, No.1, Hal. 24-30
  5. Indraloka, D. S. dan Santosa, B. 2017. Penerapan Text Mining untuk Melakukan Clustering Data Tweet Shopee Indonesia. JURNAL SAINS DAN SENI ITS Vol. 6, No. 2
  6. Liputan 6. 2020. Orang Indonesia Kedua Paling Banyak Unduh TikTok per Juli 2020. https://www.liputan6.com/tekno/read/4324103/orang-indonesia-kedua-paling-banyak-unduh-tiktok-per-juli-2020. Diakses: 31 Agustus 2020
  7. Liu, B. 2015. Sentiment Analysis Mining Opinions, Sentiments, and Emotions. New York: Cambridge University Press
  8. Nugroho, A. S., Witarto, A. B., dan Handoko, D. 2003. Support Vector Machine Teori dan Aplikasinya dalam Bioinformatika. https://www.academia.edu/24381027/Support_Vector _Machine_Teori_dan_Aplikasinya_dalam_Bioinformatika_1. Diakses: 5 November 2020
  9. Rahman, M., Darmawidjadja, Alamsah, D. 2017. Klasifikasi Untuk Dianosa Diabetes Menggunakan Metode Bayesian Regularization Neural Network(RBNN). Informatika, Vol 11, No 1
  10. Santosa, E. B. & Nugroho, A. 2019. Analisis Sentimen Calon Presiden Indonesia 2019 Berdasarkan Komentar Publik di Facebook. Eksplora Informatika, Hal 60-69
  11. Wahid dan Azhari. 2016. Peringkasan Sentimen Esktraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity. Indonesian Journal of Computing & Cybernetics Systems,Vol 10,No 2
  12. Wang, L. 2005. Support Vector Machines: Theory and Applications. Berlin: Springer

Last update:

No citation recorded.

Last update:

No citation recorded.