BibTex Citation Data :
@article{J.Gauss32799, author = {Anggun Pangesti and Sugito Sugito and Hasbi Yasin}, title = {PEMODELAN REGRESI RIDGE ROBUST S,M, MM-ESTIMATOR DALAM PENANGANAN MULTIKOLINIERITAS DAN PENCILAN (Studi Kasus : Faktor-Faktor yang Mempengaruhi Kemiskinan di Jawa Tengah Tahun 2020)}, journal = {Jurnal Gaussian}, volume = {10}, number = {3}, year = {2021}, keywords = {Ordinary Least Square (OLS); Multicolliniearity; Ridge Regression; Outliers; Robust Regression; Ridge Robust Regression; Poverty}, abstract = { The Ordinary Least Squares (OLS) is one of the most commonly used method to estimate linier regression parameters. If there is a violation of assumptions such as multicolliniearity especially coupled with the outliers, then the regression with OLS is no longer used. One method can be used to solved the multicollinearity and outliers problem is Ridge Robust Regression. Ridge Robust Regression is a modification of ridge regression method used to solve the multicolliniearity and using some estimators of robust regression used to solve the outlier, the estimator including : Maximum likelihood estimator (M-estimator), Scale estimator (S-estimator), and Method of moment estimator (MM-estimator). The case study can be used with this method is data with multicollinearity and outlier, the case study in this research is poverty in Central Java 2020 influenced by life expentancy, unemployment number, GRDP rate, dependency ratio, human development index, the precentage of population over 15 years of age with the highest education in primary school, mean years school. The result of estimation using OLS show that there is a multicollinearity and presence an outliers. Applied the ridge robust regression to case study prove that ridge robust regression can improve parameter estimation. The best ridge robust regression model is Ridge Robust Regression S-Estimator. The influence value of predictor variabels to poverty is 73,08% and the MSE value is 0,00791. }, issn = {2339-2541}, pages = {402--412} doi = {10.14710/j.gauss.10.3.402-412}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/32799} }
Refworks Citation Data :
The Ordinary Least Squares (OLS) is one of the most commonly used method to estimate linier regression parameters. If there is a violation of assumptions such as multicolliniearity especially coupled with the outliers, then the regression with OLS is no longer used. One method can be used to solved the multicollinearity and outliers problem is Ridge Robust Regression. Ridge Robust Regression is a modification of ridge regression method used to solve the multicolliniearity and using some estimators of robust regression used to solve the outlier, the estimator including : Maximum likelihood estimator (M-estimator), Scale estimator (S-estimator), and Method of moment estimator (MM-estimator). The case study can be used with this method is data with multicollinearity and outlier, the case study in this research is poverty in Central Java 2020 influenced by life expentancy, unemployment number, GRDP rate, dependency ratio, human development index, the precentage of population over 15 years of age with the highest education in primary school, mean years school. The result of estimation using OLS show that there is a multicollinearity and presence an outliers. Applied the ridge robust regression to case study prove that ridge robust regression can improve parameter estimation. The best ridge robust regression model is Ridge Robust Regression S-Estimator. The influence value of predictor variabels to poverty is 73,08% and the MSE value is 0,00791.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics