skip to main content

KLASIFIKASI PERUSAHAAN DI INDONESIA DENGAN MENGGUNAKAN PROBABILISTIC NEURAL NETWORK (Studi Kasus: Perusahaan yang Terdaftar di Bursa Efek Indonesia Tahun 2016)

*Adi Waridi Basyirudin Arifin  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Hasbi Yasin  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Budi Warsito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Classification of company performance can be judged by looking at it’s financial status, whether poor or good state. In order to classifying the financial status, annual financial report will be required. By learning financial status of company, it would be useful to evaluate the performance of the company itself from management cause, or as an investor, making strategy for investment to certain company would be easier. Classification of company performance can be achieved by some approach, either parametric or non-parametric. Neural Network is one of non-parametric method. One of the models in Artificial Neural Network is Probabilistic Neural Network (PNN). PNN consists of four layers, i.e. input layer, pattern layer, addition layer, and output layer. The distance function used is the euclid distance and each class share the same values as their weights. By using the holdout method as an evaluation in honesty, the results show that modeling the company performance with PNN model has a very high accuracy. This is confirmed by the level of accuracy of the data model built on the training data is 100%, while trial data also got 100% accuracy.

            

Keywords : Classification of Company Performance, PNN, Holdout.

Fulltext View|Download
Keywords: Classification of Company Performance, PNN, Holdout.

Article Metrics:

  1. Bursa Efek Indonesia. [online]. www.idx.co.id (diakses Minggu, 07 Mei 2017 pukul 16.00)
  2. Fausset, L. 1994. Fundamental of Neural Network: Architecture, Algorithm, and Application. New Jersey: Prentice-Hall
  3. Hanafi, M. 2009. Analisis Laporan Keuangan. Edisi ke-4. UPP STIM YKPN. Yogyakarta
  4. Harahap, M. 2009. Analisis Kritis Laporan Keuangan. Jakarta: Raja Grafindo Persada
  5. Mayes dan Shank. 2002. Financial Analysis with Microsoft Excel. Homson
  6. Peter dan Yoseph. 2011. Analisis Kebangkrutan dengan Metode Z-Score Altman Springate dan Zmijewski pada PT. Indofood Sukses Makmur Tbk Periode 2005-2009. Jurnal Ilmiah Akutansi Universitas Kristen Maranatha No. 4
  7. Prasetyo, E. 2014. Data Mining: Konsep dan Aplikasi Menggunakan Matlab. Yogyakarta: Andi Publisher
  8. Sofha, E., Yasin, H., & Rahmawati, R., 2015, Klasifikasi Data Berat Bayi Lahir Menggunakan Probabilistic Neural Network dan Regresi Logistik (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang Tahun 2014), Jurnal Gaussian Vol. 4 No. 4
  9. Specht, D.F. 1990. Probabilistic Neural Networks. Neural Networks Vol.3: 109-118
  10. Vercellis, C. 2009. Business Intelligence: Data Mining and Optimization for Decision Making. Chichester: John Wiley & Sons Ltd

Last update:

No citation recorded.

Last update:

No citation recorded.